Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synergistic Mechanism of ZnFe2O4/ZnO Nanopowder in Photocatalytic Degradation of Acid Orange 7
Corresponding Author(s) : B.M. Nagabhushana
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
ZnFe2O4/ZnO nanopowder was prepared by solution combustion method. The characterization of the nanopowder was done by powder X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Powder X-ray diffraction pattern of the nanopowder exhibited the spinel phase of zinc ferrite and wurtzite phase of zinc oxide. The nanopowder was used for the photocatalytic removal of acid orange dye 7 from its aqueous solution. The effect of various factors such as initial dye concentration, dosage of the photocatalyst and irradiation time was studied. An analysis of the results indicated that the dye degradation was more in case of 10 and 20 ppm dye solutions. The dye degradation decreased with increasing initial concentration. ZnFe2O4/ZnO can be used as a better photocatalyst for the removal of dyes from their aqueous solutions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Scarpi, F. Ninci, M. Centini and C. Anselmi, J. Chromatogr. A, 796, 319 (1998); https://doi.org/10.1016/S0021-9673(97)01015-7.
- K. Diouri, A. Chaqroune, A. Kherbeche, J. Bentama and A. Lahrichi, J. Mater. Environ. Sci., 6, 79 (2015).
- S. Buthelezi, A. Olaniran and B. Pillay, Molecules, 17, 14260 (2012); https://doi.org/10.3390/molecules171214260.
- A. Jaafar and A. Boussaoud, J. Mater. Environ. Sci., 5, 2426 (2014).
- N. Mohan, N. Balasubramanian and C. Basha, J. Hazard. Mater., 147, 644 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.063.
- M. El Haddad, R. Mamouni, R. Slimani, N. Saffaj, M. Ridaoui, S. ElAntri and S. Lazar, J. Mater. Environ. Sci., 3, 1019 (2012).
- Z. Aksu, Process Biochem., 40, 997 (2005); https://doi.org/10.1016/j.procbio.2004.04.008.
- S. Sheshmani, A. Ashori and S. Hasanzadeh, Int. J. Biol. Macromol., 68, 218 (2014); https://doi.org/10.1016/j.ijbiomac.2014.04.057.
- M.P. Elizalde-González and V. Hernández-Montoya, J. Hazard. Mater., 168, 515 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.064.
- M. Kornaros and G. Lyberatos, J. Hazard. Mater., 136, 95 (2006); https://doi.org/10.1016/j.jhazmat.2005.11.018.
- L. Fan, C. Luo, X. Li, F. Lu, H. Qiu and M. Sun, J. Hazard. Mater., 215-216, 272 (2012); https://doi.org/10.1016/j.jhazmat.2012.02.068.
- L.L. Lian, L.P. Guo and C.J. Guo, J. Hazard. Mater., 161, 126 (2009); https://doi.org/10.1016/j.jhazmat.2008.03.063.
- E.J. Weber and N. Lee Wolfe, Environ. Toxicol. Chem., 6, 911 (1987); https://doi.org/10.1002/etc.5620061202.
- S. Sirianuntapiboon and P. Srisornsak, Bioresour. Technol., 98, 1057 (2007); https://doi.org/10.1016/j.biortech.2006.04.026.
- K. Golka, S. Kopps and Z.W. Myslak, Toxicol. Lett., 151, 203 (2004); https://doi.org/10.1016/j.toxlet.2003.11.016.
- M. Wang, X. Liu, B. Pan and S. Zhang, Chemosphere, 93, 2877 (2013); https://doi.org/10.1016/j.chemosphere.2013.08.082.
- M.L.J. Richardson, J. Soc. Dyers Colorists, 99, 198 (1983); https://doi.org/10.1111/j.1478-4408.1983.tb03687.x.
- I. Oller, S. Malato and J.A. Sanchez Perez, Sci. Total Environ., 409, 4141 (2011); https://doi.org/10.1016/j.scitotenv.2010.08.061.
- R.S. Raveendra, P.A. Prashanth, R. Hari Krishna, N.P. Bhagya, B.M. Nagabhushana, H. Raja Naika, K. Lingaraju, H. Nagabhushana and B. Daruka Prasad, J. Asian Ceram. Soc., 2, 357 (2014); https://doi.org/10.1016/j.jascer.2014.07.008.
- C. Tang and V. Chen, Water Res., 38, 2775 (2004); https://doi.org/10.1016/j.watres.2004.03.020.
- H. El Boujaady, M. Mourabet, M. Bennani-Ziatni and A. Taitai, J. Assoc. Arab Univ. Basic Appl. Sci., 16, 64 (2014); https://doi.org/10.1016/j.jaubas.2013.09.001.
- A.R. Khataee and G. Dehghan, J. Taiwan Inst. Chem. Eng., 42, 26 (2011); https://doi.org/10.1016/j.jtice.2010.03.007.
- B.B. Himanshu, Ph.D. Thesis, Bacterial Degradation of Azo Dyes and Its derivatives, Saurashtra University, Rajkot, India (2011).
- H.R. Pouretedal, H. Eskandari, M.H. Keshavarz and A. Semnani, Acta Chim. Slov., 56, 353 (2009).
- Z. Zainal, C.Y. Lee, M.Z. Hussein, A. Kassim and N.A. Yusof, J. Hazard. Mater., 118, 197 (2005); https://doi.org/10.1016/j.jhazmat.2004.11.009.
- S. Baruah, S.S. Sinha, B. Ghosh, S.K. Pal, A.K. Raychaudhuri and J. Dutta, J. Appl. Phys., 105, 074308 (2009); https://doi.org/10.1063/1.3100221.
- Z.-C. Wu, Y. Zhang, T.-X. Tao, L. Zhang and H. Fong, Appl. Surf. Sci., 257, 1092 (2010); https://doi.org/10.1016/j.apsusc.2010.08.022.
- M.N. Rashed and A.A. El-Amin, Int. J. Phys. Sci., 2, 73 (2007).
- R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009); https://doi.org/10.1016/j.powtec.2008.07.004.
- R.V. Solomon, I.S. Lydia, J.P. Merlin and P. Venuvanalingam, J. Iran. Chem. Soc., 9, 101 (2012); https://doi.org/10.1007/s13738-011-0033-8.
- M.H. Habibi, A. Hassanzadeh and A. Zeini-Isfahani, Dyes Pigments, 69, 93 (2006); https://doi.org/10.1016/j.dyepig.2005.02.011.
- L. Cao, A. Huang, F.J. Spiess and S.L.J. Suib, J. Catal., 188, 48 (1999); https://doi.org/10.1006/jcat.1999.2596.
- C.B. Almquist and P. Biswas, J. Catal., 212, 145 (2002); https://doi.org/10.1006/jcat.2002.3783.
- O. Khaselev, J. Sci., 280, 425 (1998); https://doi.org/10.1126/science.280.5362.425.
- J.S. Jang, D.W. Hwang and J.S. Lee, Catal. Today, 120, 174 (2007); https://doi.org/10.1016/j.cattod.2006.07.052.
- N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar and E.J. Tacconi, J. Phys. Chem. B, 109, 11953 (2005); https://doi.org/10.1021/jp044156n.
- S.H. Xu, D.L. Feng, D.X. Li and W.F. Shangguan, Chin. J. Chem., 26, 842 (2008); https://doi.org/10.1002/cjoc.200890156.
- H.M. Xiao, X.-M. Liu and S.-Y. Fu, Compos. Sci. Technol., 66, 2003 (2006); https://doi.org/10.1016/j.compscitech.2006.01.001.
- A. Kezzim, N. Nasrallah, A. Abdi and M. Trari, Energy Conserv. Manage., 52, 2800 (2011); https://doi.org/10.1016/j.enconman.2011.02.014.
- P. Cheng, W. Li, T.L. Zhou, Y.P. Jin and M.Y. Gu, J. Photochem. Photobiol. Chem., 168, 97 (2004); https://doi.org/10.1016/j.jphotochem.2004.05.018.
- L. Zhang, Y. He, Y. Wu and T. Wu, Mater. Sci. Eng. B, 176, 1497 (2011); https://doi.org/10.1016/j.mseb.2011.09.022.
- J.S. Jang, S.J. Hong, J.Y. Kim and J.S. Lee, Chem. Phys. Lett., 475, 78 (2009); https://doi.org/10.1016/j.cplett.2009.05.012.
- Chaudhuri and K. Mandal, J. Magn. Magn. Mater., 377, 441 (2015); https://doi.org/10.1016/j.jmmm.2014.10.142.
- A. Hameed, V. Gombac, T. Montini, M. Graziani and P. Fornasiero, Chem. Phys. Lett., 472, 212 (2009); https://doi.org/10.1016/j.cplett.2009.03.017.
- G.K. Pradhan and K.M. Parida, Int. J. Eng. Sci. Technol., 2, 53 (2010).
- K.C. Patil, M.S. Hegde, T. Rattan and S.T. Aruna, Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, World Scientific Publishing, Singapore, p. 332 (2008).
- P. Muthirulan, C.N. Devi and M.M. Sundaram, Mater. Sci. Semicond. Process., 25, 219 (2014); https://doi.org/10.1016/j.mssp.2013.11.036.
- V.K. Gupta, A. Mittal, V. Gajbe and J. Mittal, Ind. Eng. Chem. Res., 45, 1446 (2006); https://doi.org/10.1021/ie051111f.
- J.P. Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter, I. Goncalves and S. Ferreira-Dias, Sep. Purif. Technol., 40, 309 (2004); https://doi.org/10.1016/j.seppur.2004.03.010.
- L. Zhang, Z. Cheng, X. Guo, X. Jiang and R. Liu, J. Mol. Liq., 197, 353 (2014); https://doi.org/10.1016/j.molliq.2014.06.007.
- A.O. Ibhadon, G.M. Greenway, Y. Yue, P. Falaras and D. Tsoukleris, Appl. Catal. B, 84, 351 (2008); https://doi.org/10.1016/j.apcatb.2008.04.019.
- R.R. Shahraki and M. Ebrahimi, J. Nanostruct., 2, 413 (2013); https://doi.org/10.7508/JNS.2012.04.002.
- T.M. Hammad and J.K. Salem, J. Nanopart. Res., 13, 2205 (2011); https://doi.org/10.1007/s11051-010-9978-2.
- B.P. Ladgaonkar, C.B. Kolekar and A.S. Vaingankar, Bull. Mater. Sci., 25, 351 (2002); https://doi.org/10.1007/BF02704131.
- M. Thomas and K.C. George, Indian J. Pure Appl. Phys., 47, 81 (2009).
- N.M. Deraz and A. Alarifi, Int. J. Electrochem. Sci., 7, 6501 (2012).
- M.N. Zulfiqar Ahmed, K.B. Chandrasekhar, A.A. Jahagirdar, H. Nagabhushana and B.M. Nagabhushana, Appl. Nanosci., 5, 961 (2015); https://doi.org/10.1007/s13204-014-0395-1.
- T. Jia, J. Zhao, F. Fu, Z. Deng, W. Wang, Z. Fu and F. Meng, Int. J. Photoenergy, Article ID 197824 (2014); https://doi.org/10.1155/2014/197824.
- A.S. Ganeshraja, A.S. Clara, K. Rajkumar, Y. Wang, Y. Wang, J. Wang and K. Anbalagan, Appl. Surf. Sci., 353, 553 (2015); https://doi.org/10.1016/j.apsusc.2015.06.118.
References
C. Scarpi, F. Ninci, M. Centini and C. Anselmi, J. Chromatogr. A, 796, 319 (1998); https://doi.org/10.1016/S0021-9673(97)01015-7.
K. Diouri, A. Chaqroune, A. Kherbeche, J. Bentama and A. Lahrichi, J. Mater. Environ. Sci., 6, 79 (2015).
S. Buthelezi, A. Olaniran and B. Pillay, Molecules, 17, 14260 (2012); https://doi.org/10.3390/molecules171214260.
A. Jaafar and A. Boussaoud, J. Mater. Environ. Sci., 5, 2426 (2014).
N. Mohan, N. Balasubramanian and C. Basha, J. Hazard. Mater., 147, 644 (2007); https://doi.org/10.1016/j.jhazmat.2007.01.063.
M. El Haddad, R. Mamouni, R. Slimani, N. Saffaj, M. Ridaoui, S. ElAntri and S. Lazar, J. Mater. Environ. Sci., 3, 1019 (2012).
Z. Aksu, Process Biochem., 40, 997 (2005); https://doi.org/10.1016/j.procbio.2004.04.008.
S. Sheshmani, A. Ashori and S. Hasanzadeh, Int. J. Biol. Macromol., 68, 218 (2014); https://doi.org/10.1016/j.ijbiomac.2014.04.057.
M.P. Elizalde-González and V. Hernández-Montoya, J. Hazard. Mater., 168, 515 (2009); https://doi.org/10.1016/j.jhazmat.2009.02.064.
M. Kornaros and G. Lyberatos, J. Hazard. Mater., 136, 95 (2006); https://doi.org/10.1016/j.jhazmat.2005.11.018.
L. Fan, C. Luo, X. Li, F. Lu, H. Qiu and M. Sun, J. Hazard. Mater., 215-216, 272 (2012); https://doi.org/10.1016/j.jhazmat.2012.02.068.
L.L. Lian, L.P. Guo and C.J. Guo, J. Hazard. Mater., 161, 126 (2009); https://doi.org/10.1016/j.jhazmat.2008.03.063.
E.J. Weber and N. Lee Wolfe, Environ. Toxicol. Chem., 6, 911 (1987); https://doi.org/10.1002/etc.5620061202.
S. Sirianuntapiboon and P. Srisornsak, Bioresour. Technol., 98, 1057 (2007); https://doi.org/10.1016/j.biortech.2006.04.026.
K. Golka, S. Kopps and Z.W. Myslak, Toxicol. Lett., 151, 203 (2004); https://doi.org/10.1016/j.toxlet.2003.11.016.
M. Wang, X. Liu, B. Pan and S. Zhang, Chemosphere, 93, 2877 (2013); https://doi.org/10.1016/j.chemosphere.2013.08.082.
M.L.J. Richardson, J. Soc. Dyers Colorists, 99, 198 (1983); https://doi.org/10.1111/j.1478-4408.1983.tb03687.x.
I. Oller, S. Malato and J.A. Sanchez Perez, Sci. Total Environ., 409, 4141 (2011); https://doi.org/10.1016/j.scitotenv.2010.08.061.
R.S. Raveendra, P.A. Prashanth, R. Hari Krishna, N.P. Bhagya, B.M. Nagabhushana, H. Raja Naika, K. Lingaraju, H. Nagabhushana and B. Daruka Prasad, J. Asian Ceram. Soc., 2, 357 (2014); https://doi.org/10.1016/j.jascer.2014.07.008.
C. Tang and V. Chen, Water Res., 38, 2775 (2004); https://doi.org/10.1016/j.watres.2004.03.020.
H. El Boujaady, M. Mourabet, M. Bennani-Ziatni and A. Taitai, J. Assoc. Arab Univ. Basic Appl. Sci., 16, 64 (2014); https://doi.org/10.1016/j.jaubas.2013.09.001.
A.R. Khataee and G. Dehghan, J. Taiwan Inst. Chem. Eng., 42, 26 (2011); https://doi.org/10.1016/j.jtice.2010.03.007.
B.B. Himanshu, Ph.D. Thesis, Bacterial Degradation of Azo Dyes and Its derivatives, Saurashtra University, Rajkot, India (2011).
H.R. Pouretedal, H. Eskandari, M.H. Keshavarz and A. Semnani, Acta Chim. Slov., 56, 353 (2009).
Z. Zainal, C.Y. Lee, M.Z. Hussein, A. Kassim and N.A. Yusof, J. Hazard. Mater., 118, 197 (2005); https://doi.org/10.1016/j.jhazmat.2004.11.009.
S. Baruah, S.S. Sinha, B. Ghosh, S.K. Pal, A.K. Raychaudhuri and J. Dutta, J. Appl. Phys., 105, 074308 (2009); https://doi.org/10.1063/1.3100221.
Z.-C. Wu, Y. Zhang, T.-X. Tao, L. Zhang and H. Fong, Appl. Surf. Sci., 257, 1092 (2010); https://doi.org/10.1016/j.apsusc.2010.08.022.
M.N. Rashed and A.A. El-Amin, Int. J. Phys. Sci., 2, 73 (2007).
R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009); https://doi.org/10.1016/j.powtec.2008.07.004.
R.V. Solomon, I.S. Lydia, J.P. Merlin and P. Venuvanalingam, J. Iran. Chem. Soc., 9, 101 (2012); https://doi.org/10.1007/s13738-011-0033-8.
M.H. Habibi, A. Hassanzadeh and A. Zeini-Isfahani, Dyes Pigments, 69, 93 (2006); https://doi.org/10.1016/j.dyepig.2005.02.011.
L. Cao, A. Huang, F.J. Spiess and S.L.J. Suib, J. Catal., 188, 48 (1999); https://doi.org/10.1006/jcat.1999.2596.
C.B. Almquist and P. Biswas, J. Catal., 212, 145 (2002); https://doi.org/10.1006/jcat.2002.3783.
O. Khaselev, J. Sci., 280, 425 (1998); https://doi.org/10.1126/science.280.5362.425.
J.S. Jang, D.W. Hwang and J.S. Lee, Catal. Today, 120, 174 (2007); https://doi.org/10.1016/j.cattod.2006.07.052.
N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar and E.J. Tacconi, J. Phys. Chem. B, 109, 11953 (2005); https://doi.org/10.1021/jp044156n.
S.H. Xu, D.L. Feng, D.X. Li and W.F. Shangguan, Chin. J. Chem., 26, 842 (2008); https://doi.org/10.1002/cjoc.200890156.
H.M. Xiao, X.-M. Liu and S.-Y. Fu, Compos. Sci. Technol., 66, 2003 (2006); https://doi.org/10.1016/j.compscitech.2006.01.001.
A. Kezzim, N. Nasrallah, A. Abdi and M. Trari, Energy Conserv. Manage., 52, 2800 (2011); https://doi.org/10.1016/j.enconman.2011.02.014.
P. Cheng, W. Li, T.L. Zhou, Y.P. Jin and M.Y. Gu, J. Photochem. Photobiol. Chem., 168, 97 (2004); https://doi.org/10.1016/j.jphotochem.2004.05.018.
L. Zhang, Y. He, Y. Wu and T. Wu, Mater. Sci. Eng. B, 176, 1497 (2011); https://doi.org/10.1016/j.mseb.2011.09.022.
J.S. Jang, S.J. Hong, J.Y. Kim and J.S. Lee, Chem. Phys. Lett., 475, 78 (2009); https://doi.org/10.1016/j.cplett.2009.05.012.
Chaudhuri and K. Mandal, J. Magn. Magn. Mater., 377, 441 (2015); https://doi.org/10.1016/j.jmmm.2014.10.142.
A. Hameed, V. Gombac, T. Montini, M. Graziani and P. Fornasiero, Chem. Phys. Lett., 472, 212 (2009); https://doi.org/10.1016/j.cplett.2009.03.017.
G.K. Pradhan and K.M. Parida, Int. J. Eng. Sci. Technol., 2, 53 (2010).
K.C. Patil, M.S. Hegde, T. Rattan and S.T. Aruna, Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, World Scientific Publishing, Singapore, p. 332 (2008).
P. Muthirulan, C.N. Devi and M.M. Sundaram, Mater. Sci. Semicond. Process., 25, 219 (2014); https://doi.org/10.1016/j.mssp.2013.11.036.
V.K. Gupta, A. Mittal, V. Gajbe and J. Mittal, Ind. Eng. Chem. Res., 45, 1446 (2006); https://doi.org/10.1021/ie051111f.
J.P. Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter, I. Goncalves and S. Ferreira-Dias, Sep. Purif. Technol., 40, 309 (2004); https://doi.org/10.1016/j.seppur.2004.03.010.
L. Zhang, Z. Cheng, X. Guo, X. Jiang and R. Liu, J. Mol. Liq., 197, 353 (2014); https://doi.org/10.1016/j.molliq.2014.06.007.
A.O. Ibhadon, G.M. Greenway, Y. Yue, P. Falaras and D. Tsoukleris, Appl. Catal. B, 84, 351 (2008); https://doi.org/10.1016/j.apcatb.2008.04.019.
R.R. Shahraki and M. Ebrahimi, J. Nanostruct., 2, 413 (2013); https://doi.org/10.7508/JNS.2012.04.002.
T.M. Hammad and J.K. Salem, J. Nanopart. Res., 13, 2205 (2011); https://doi.org/10.1007/s11051-010-9978-2.
B.P. Ladgaonkar, C.B. Kolekar and A.S. Vaingankar, Bull. Mater. Sci., 25, 351 (2002); https://doi.org/10.1007/BF02704131.
M. Thomas and K.C. George, Indian J. Pure Appl. Phys., 47, 81 (2009).
N.M. Deraz and A. Alarifi, Int. J. Electrochem. Sci., 7, 6501 (2012).
M.N. Zulfiqar Ahmed, K.B. Chandrasekhar, A.A. Jahagirdar, H. Nagabhushana and B.M. Nagabhushana, Appl. Nanosci., 5, 961 (2015); https://doi.org/10.1007/s13204-014-0395-1.
T. Jia, J. Zhao, F. Fu, Z. Deng, W. Wang, Z. Fu and F. Meng, Int. J. Photoenergy, Article ID 197824 (2014); https://doi.org/10.1155/2014/197824.
A.S. Ganeshraja, A.S. Clara, K. Rajkumar, Y. Wang, Y. Wang, J. Wang and K. Anbalagan, Appl. Surf. Sci., 353, 553 (2015); https://doi.org/10.1016/j.apsusc.2015.06.118.