Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural Effects of Tungsten Oxide Electro-Catalyst Towards High Stable CO Tolerance Mechanism
Corresponding Author(s) : M.S.S. Saravanakumaar
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
In this work, a cost effective, facile and rational synthesis of two different nanostructures including nanosphere shaped and nanorod sized tungsten oxide nanomaterials. The prepared nanoparticles were characterized by powder X-ray diffraction, scanning and transmission electron microscopic analyses, energy dispersive spectroscopy and Raman spectroscopy. The XRD result confirms that the nanoparticles have a polycrystalline nature with well-developed monoclinic crystalline structure. The microscopic images evidently confirm the nanosphere shaped and nanorods sized WO3 samples. Further the purity and stoichiometry amount of chemical compositions were confirmed by the EDS spectra. The modes of vibrations of the WO3 nanoparticles were identified by Raman spectroscopy. From these structural investigations, it is evidently showing that the morphologies of the final products can be tuned via synthesis process. In addition, the WO3 nanosphere exhibited excellent long-term durability and CO tolerance against the high quality Pt/C catalyst. To our best of knowledge, this is the first report of the use of WO3 nanocrystals that act as CO2 tolerance catalysts with high stability. The enhanced activity of the WO3 nanosphere is due mainly to the higher structural openness in WO3 and this makes the WO3 nanosphere a good candidate for high-performance non-precious metal-based electrocatalysts with low cost and high efficiency for electrochemical energy conversion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chandrasekaran, Sol. Energy Mater. Sol. Cells, 109, 220 (2013); https://doi.org/10.1016/j.solmat.2012.11.003.
- S. Chandrasekaran, J. Nanoeng. Nanomanuf., 1, 242 (2011); https://doi.org/10.1166/jnan.2011.1024.
- J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K.T. Lee and J. Cho, Adv. Energy Mater., 1, 34 (2011); https://doi.org/10.1002/aenm.201000010.
- S. Chandrasekaran, S.H. Hur, W.M. Choi, J.S. Chung and E.J. Kim, Mater. Lett., 160, 92 (2015); https://doi.org/10.1016/j.matlet.2015.07.091.
- S. Chandrasekaran, J.S. Chung, E.J. Kim and S.H. Hur, J. Electrochem. Sci. Technol., 7, 1 (2016); https://doi.org/10.5229/JECST.2016.7.1.7.
- L. Carrette, K.A. Friedrich and U. Stimming, Fuel Cells, 1, 5 (2001); https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5> 3.0.CO;2-G.
- V. Senthilkumar, Y.S. Kim, S. Chandrasekaran, B. Rajagopalan, E.J. Kim and J.S. Chung, RSC Advances, 5, 20545 (2015); https://doi.org/10.1039/C5RA00035A.
- S. Chandrasekaran, S.H. Hur, E.J. Kim, B. Rajagopalan, K.F. Babu, V. Senthilkumar, J.S. Chung, W.M. Choi and Y.S. Kim, RSC Advances, 5, 29159 (2015); https://doi.org/10.1039/C5RA02934A.
- S. Chandrasekaran, W.M. Choi, J.S. Chung, S.H. Hur and E.J. Kim, Mater. Lett., 136, 118 (2014); https://doi.org/10.1016/j.matlet.2014.07.179.
- N.M. Shinde, A.D. Jagadale, V.S. Kumbhar, T.R. Rana, J.H. Kim and C.D. Lokhande, Korean J. Chem. Eng., 32, 974 (2015); https://doi.org/10.1007/s11814-014-0323-9.
- H. Long, W. Zeng and H. Zhang, J. Mater. Sci. Mater. Electron., 26, 4698 (2015); https://doi.org/10.1007/s10854-015-2896-4.
- W. Morales, M. Cason, O. Aina, N.R. de Tacconi and K. Rajeshwar, J. Am. Chem. Soc., 130, 6318 (2008); https://doi.org/10.1021/ja8012402.
- A. Agrawal, J.P. Cronin and R. Zhang, Sol. Energy Mater. Sol. Cells, 31, 9 (1993); https://doi.org/10.1016/0927-0248(93)90003-L.
- J. Su, X. Feng, J.D. Sloppy, L. Guo and C.A. Grimes, Nano Lett., 11, 203 (2011); https://doi.org/10.1021/nl1034573.
- L. Wang, A. Teleki, S.E. Pratsinis and P.I. Gouma, Chem. Mater., 20, 4794 (2008); https://doi.org/10.1021/cm800761e.
- D. Li, G. Wu, G. Gao, J. Shen and F. Huang, ACS Appl. Mater. Interfaces, 3, 4573 (2011); https://doi.org/10.1021/am200781e.
- Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma and J.Q. Xu, J. Phys. Chem. C, 114, 2049 (2010); https://doi.org/10.1021/jp909742d.
- M. Righettoni, A. Tricoli and S.E. Pratsinis, Chem. Mater., 22, 3152 (2010); https://doi.org/10.1021/cm1001576.
- G. Gu, B. Zheng, W.Q. Han, S. Roth and J. Liu, Nano Lett., 2, 849 (2002); https://doi.org/10.1021/nl025618g.
- M.J. Hudson, J.W. Peckett and P.J.F. Harris, J. Mater. Chem., 13, 445 (2003); https://doi.org/10.1039/b211820n.
- J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Niederberger and M. Antonietti, Angew. Chem. Int. Ed., 45, 261 (2006); https://doi.org/10.1002/anie.200502823.
- J. Polleux, N. Pinna, M. Antonietti and M. Niederberger, J. Am. Chem. Soc., 127, 15595 (2005); https://doi.org/10.1021/ja0544915.
- C. Klinke, J.B. Hannon, L. Gignac, K. Reuter and P. Avouris, J. Phys. Chem. B, 109, 17787 (2005); https://doi.org/10.1021/jp0533224.
- A.P.E. York, J. Sloan, M.L.H. Green and J. Sloan, Chem. Commun., 269 (1999); https://doi.org/10.1039/a807403h.
- Zh. Gu, T. Zhai, B. Gao, X. Sheng, Y. Wang, H. Fu, Y. Ma and J. Yao, J. Phys. Chem. B, 110, 23829 (2006); https://doi.org/10.1021/jp065170y.
- M. Shibuya and M. Miyauchi, Adv. Mater., 21, 1373 (2009); https://doi.org/10.1002/adma.200802918.
- S. Chandrasekaran, E.J. Kim, J.S. Chung, C.R. Bowen, B. Rajagopalan, V. Adamaki, R.D.K. Misra and S.H. Hur, J. Mater. Chem. A: Mater. Energy Sustain., 4, 13271 (2016); https://doi.org/10.1039/C6TA05043C.
- S. Chandrasekaran, E.J. Kim, J.S. Chung, I.-K. Yoo, V. Senthilkumar, Y.S. Kim, C.R. Bowen, V. Adamaki and S.H. Hur, Chem. Eng. J., 309, 682 (2017); https://doi.org/10.1016/j.cej.2016.10.087.
- S. Chandrasekaran and R.D.K. Misra, Mater. Technol., 28, 228 (2013); https://doi.org/10.1179/1753555713Y.0000000084.
- L. Bruno Chandrasekar, R. Chandramohan, M. Karunakaran and R. Vijayalakshmi, Nat. Sci. Mater., 1, 18 (2016); https://doi.org/10.24909/NOSM2016111.4.
- R. Dhana Balan, Nat. Sci. Mater., 1, 7 (2016); https://doi.org/10.24909/NOSM2016111.2.
- M.S.S. Saravanakumaar and P. Elangovan, Nat. Sci. Mater., 1, 1 (2016); https://doi.org/10.24909/NOSM2016111.1.
- E. Salje, Acta Crystallogr. A, 31, 360 (1975); https://doi.org/10.1107/S0567739475000757.
- D.S. Kim, M. Ostromecki, I.E. Wachs, S.D. Kohler and J.G. Ekerdt, Catal. Lett., 33, 209 (1995); https://doi.org/10.1007/BF00814225.
- S.-H. Lee, H.M. Cheong, J.-G. Zhang, A. Mascarenhas, D.K. Benson and S.K. Deb, Appl. Phys. Lett., 74, 242 (1999); https://doi.org/10.1063/1.123268.
- M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand and M. Figlarz, J. Solid State Chem., 67, 235 (1987); https://doi.org/10.1016/0022-4596(87)90359-8.
- M. Boulova and G. Lucazeau, J. Solid State Chem., 167, 425 (2002); https://doi.org/10.1016/S0022-4596(02)99649-0.
- K. Kathiresan, P. Elangovan and M.S.S. Saravanakumaar, Nat. Sci. Mater., 4, 11 (2017); https://doi.org/10.24909/NOSM2017KA.
References
S. Chandrasekaran, Sol. Energy Mater. Sol. Cells, 109, 220 (2013); https://doi.org/10.1016/j.solmat.2012.11.003.
S. Chandrasekaran, J. Nanoeng. Nanomanuf., 1, 242 (2011); https://doi.org/10.1166/jnan.2011.1024.
J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K.T. Lee and J. Cho, Adv. Energy Mater., 1, 34 (2011); https://doi.org/10.1002/aenm.201000010.
S. Chandrasekaran, S.H. Hur, W.M. Choi, J.S. Chung and E.J. Kim, Mater. Lett., 160, 92 (2015); https://doi.org/10.1016/j.matlet.2015.07.091.
S. Chandrasekaran, J.S. Chung, E.J. Kim and S.H. Hur, J. Electrochem. Sci. Technol., 7, 1 (2016); https://doi.org/10.5229/JECST.2016.7.1.7.
L. Carrette, K.A. Friedrich and U. Stimming, Fuel Cells, 1, 5 (2001); https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5> 3.0.CO;2-G.
V. Senthilkumar, Y.S. Kim, S. Chandrasekaran, B. Rajagopalan, E.J. Kim and J.S. Chung, RSC Advances, 5, 20545 (2015); https://doi.org/10.1039/C5RA00035A.
S. Chandrasekaran, S.H. Hur, E.J. Kim, B. Rajagopalan, K.F. Babu, V. Senthilkumar, J.S. Chung, W.M. Choi and Y.S. Kim, RSC Advances, 5, 29159 (2015); https://doi.org/10.1039/C5RA02934A.
S. Chandrasekaran, W.M. Choi, J.S. Chung, S.H. Hur and E.J. Kim, Mater. Lett., 136, 118 (2014); https://doi.org/10.1016/j.matlet.2014.07.179.
N.M. Shinde, A.D. Jagadale, V.S. Kumbhar, T.R. Rana, J.H. Kim and C.D. Lokhande, Korean J. Chem. Eng., 32, 974 (2015); https://doi.org/10.1007/s11814-014-0323-9.
H. Long, W. Zeng and H. Zhang, J. Mater. Sci. Mater. Electron., 26, 4698 (2015); https://doi.org/10.1007/s10854-015-2896-4.
W. Morales, M. Cason, O. Aina, N.R. de Tacconi and K. Rajeshwar, J. Am. Chem. Soc., 130, 6318 (2008); https://doi.org/10.1021/ja8012402.
A. Agrawal, J.P. Cronin and R. Zhang, Sol. Energy Mater. Sol. Cells, 31, 9 (1993); https://doi.org/10.1016/0927-0248(93)90003-L.
J. Su, X. Feng, J.D. Sloppy, L. Guo and C.A. Grimes, Nano Lett., 11, 203 (2011); https://doi.org/10.1021/nl1034573.
L. Wang, A. Teleki, S.E. Pratsinis and P.I. Gouma, Chem. Mater., 20, 4794 (2008); https://doi.org/10.1021/cm800761e.
D. Li, G. Wu, G. Gao, J. Shen and F. Huang, ACS Appl. Mater. Interfaces, 3, 4573 (2011); https://doi.org/10.1021/am200781e.
Q. Xiang, G.F. Meng, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma and J.Q. Xu, J. Phys. Chem. C, 114, 2049 (2010); https://doi.org/10.1021/jp909742d.
M. Righettoni, A. Tricoli and S.E. Pratsinis, Chem. Mater., 22, 3152 (2010); https://doi.org/10.1021/cm1001576.
G. Gu, B. Zheng, W.Q. Han, S. Roth and J. Liu, Nano Lett., 2, 849 (2002); https://doi.org/10.1021/nl025618g.
M.J. Hudson, J.W. Peckett and P.J.F. Harris, J. Mater. Chem., 13, 445 (2003); https://doi.org/10.1039/b211820n.
J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Niederberger and M. Antonietti, Angew. Chem. Int. Ed., 45, 261 (2006); https://doi.org/10.1002/anie.200502823.
J. Polleux, N. Pinna, M. Antonietti and M. Niederberger, J. Am. Chem. Soc., 127, 15595 (2005); https://doi.org/10.1021/ja0544915.
C. Klinke, J.B. Hannon, L. Gignac, K. Reuter and P. Avouris, J. Phys. Chem. B, 109, 17787 (2005); https://doi.org/10.1021/jp0533224.
A.P.E. York, J. Sloan, M.L.H. Green and J. Sloan, Chem. Commun., 269 (1999); https://doi.org/10.1039/a807403h.
Zh. Gu, T. Zhai, B. Gao, X. Sheng, Y. Wang, H. Fu, Y. Ma and J. Yao, J. Phys. Chem. B, 110, 23829 (2006); https://doi.org/10.1021/jp065170y.
M. Shibuya and M. Miyauchi, Adv. Mater., 21, 1373 (2009); https://doi.org/10.1002/adma.200802918.
S. Chandrasekaran, E.J. Kim, J.S. Chung, C.R. Bowen, B. Rajagopalan, V. Adamaki, R.D.K. Misra and S.H. Hur, J. Mater. Chem. A: Mater. Energy Sustain., 4, 13271 (2016); https://doi.org/10.1039/C6TA05043C.
S. Chandrasekaran, E.J. Kim, J.S. Chung, I.-K. Yoo, V. Senthilkumar, Y.S. Kim, C.R. Bowen, V. Adamaki and S.H. Hur, Chem. Eng. J., 309, 682 (2017); https://doi.org/10.1016/j.cej.2016.10.087.
S. Chandrasekaran and R.D.K. Misra, Mater. Technol., 28, 228 (2013); https://doi.org/10.1179/1753555713Y.0000000084.
L. Bruno Chandrasekar, R. Chandramohan, M. Karunakaran and R. Vijayalakshmi, Nat. Sci. Mater., 1, 18 (2016); https://doi.org/10.24909/NOSM2016111.4.
R. Dhana Balan, Nat. Sci. Mater., 1, 7 (2016); https://doi.org/10.24909/NOSM2016111.2.
M.S.S. Saravanakumaar and P. Elangovan, Nat. Sci. Mater., 1, 1 (2016); https://doi.org/10.24909/NOSM2016111.1.
E. Salje, Acta Crystallogr. A, 31, 360 (1975); https://doi.org/10.1107/S0567739475000757.
D.S. Kim, M. Ostromecki, I.E. Wachs, S.D. Kohler and J.G. Ekerdt, Catal. Lett., 33, 209 (1995); https://doi.org/10.1007/BF00814225.
S.-H. Lee, H.M. Cheong, J.-G. Zhang, A. Mascarenhas, D.K. Benson and S.K. Deb, Appl. Phys. Lett., 74, 242 (1999); https://doi.org/10.1063/1.123268.
M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand and M. Figlarz, J. Solid State Chem., 67, 235 (1987); https://doi.org/10.1016/0022-4596(87)90359-8.
M. Boulova and G. Lucazeau, J. Solid State Chem., 167, 425 (2002); https://doi.org/10.1016/S0022-4596(02)99649-0.
K. Kathiresan, P. Elangovan and M.S.S. Saravanakumaar, Nat. Sci. Mater., 4, 11 (2017); https://doi.org/10.24909/NOSM2017KA.