Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetics Analysis of Reactions at Triple Phase Boundaries of Anode Supported Tubular Solid Oxide Fuel Cell
Corresponding Author(s) : P. Kalra
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
Solid oxide fuel cells are solid-state ceramic cells, operating at a high temperature and recently been discovered one of the most efficient power generation devices causing no environmental pollution. In this paper, kinetic analysis study typical solid oxide fuel cell reactions has been done particularly methane steam reforming, water gas shift and electrochemical cell reactions on the active three phase boundaries of highly porous Ni-YSZ anode of an anode supported tubular solid oxide fuel cell. The reforming and water gas shift reactions occur in the gas phase due to the high temperature predominant in the solid oxide fuel cell leading to the production of hydrogen, CO and CO2. The hydrogen produced acts as a fuel for the solid oxide fuel cell reacts with O2- ions at triple phase boundary forming water (steam) and DC current due to conventional electron flow from anode to cathode of solid oxide fuel cell. The variation of Gibb’s free energy, equilibrium constant and rate of reactions has been represented and analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Kalra, R.K. Garg and A. Kumar, Solid Oxide Fuel Cell-A Future Source of Power and Heat Generation, Engineering Applications of Nanoscience and Nanomaterials, Special edition of Material Science Forum, Trans Tech Publications, Switzerland, vol. 757, pp. 217-241 (2013).
- S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier Science (2003).
- S.C. Singhal, Solid State Ion., 152-153, 405 (2002); https://doi.org/10.1016/S0167-2738(02)00349-1.
- S.C. Singhal, Solid State Ion., 135, 305 (2000); https://doi.org/10.1016/S0167-2738(00)00452-5.
- N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat and S. Assabumrungrat, Eng. J. (N.Y.), 13, 65 (2009); https://doi.org/10.4186/ej.2009.13.1.65.
- N.P. Brandon, Materials Engineering for Solid Oxide Fuel Cell Technology, Materials Science Forum, Trans Tech Publications, Switzerland vols. 539-543, pp 20-27 (2007).
- H. Mahcene, H. Ben-Moussa, H. Bouguetaia, B. Bouchekima and D. Bechki, Fuel Cells J., (2006).
- S. McIntosh and R.J. Gorte, Chem. Rev., 104, 4845 (2004); https://doi.org/10.1021/cr020725g.
- M. Lo Faro, D. La Rosa, V. Antonucci and A.S. Arico, J. Indian Inst. Sci., 89, 363 (2009).
- A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal and J. Vohs, Nat. Mater., 3, 17 (2004); https://doi.org/10.1038/nmat1040.
- P. Kalra, R.K. Garg and A. Kumar, J. Energy Technol. Policy, 5, 76 (2015).
- P. Kalra, R.K. Garg and A. Kumar, Indian J. Sci. Technol., 10, 1 (2017); https://doi.org/10.17485/ijst/2017/v10i19/113661.
- P. Kalra, R.K. Garg and N.K. Grover, Int. J. Chemtech Res., 10, 784 (2017).
- U. Pasaogullari and C.Y. Wang, Proc. ECS, 07, 1403 (2003).
- F. Gallucci, L. Paturzo and A. Basile, Int. J. Hydrogen Energy, 29, 611 (2004); https://doi.org/10.1016/j.ijhydene.2003.08.003.
- F. Calise, M. Dentice d’Accadia, A. Palombo and L. Vanoli, Int. J. Thermodyn., 10, 87 (2007).
- F. Calise, M. Dentice d’Accadia, A. Palombo and L. Vanoli, J. Fuel Cell Sci. Technol., 5, 021014 (2008); https://doi.org/10.1115/1.2784296.
- M. Andersson, J. Yuan and B. Sundén, Appl. Energy, 87, 1461 (2010); https://doi.org/10.1016/j.apenergy.2009.11.013.
- J. Yuan, Chem. Prod. Process Model., 5, Article 12 (2010); https://doi.org/10.2202/1934-2659.1450.
- S.Z. Abbas, V. Dupont and T. Mahmud, Int. J. Hydrogen Energy, 42, 18910 (2017); https://doi.org/10.1016/j.ijhydene.2017.05.222.
- E.S. Hecht, G.K. Gupta, H. Zhu, A.M. Dean, R.J. Kee, L. Maier and O. Deutschmann, Appl. Catal. A, 295, 40 (2005); https://doi.org/10.1016/j.apcata.2005.08.003.
- L. Chibane and B. Djellouli, Int. J. Chem. Eng. Appl., 2, 147 (2011); https://doi.org/10.7763/IJCEA.2011.V2.93.
References
P. Kalra, R.K. Garg and A. Kumar, Solid Oxide Fuel Cell-A Future Source of Power and Heat Generation, Engineering Applications of Nanoscience and Nanomaterials, Special edition of Material Science Forum, Trans Tech Publications, Switzerland, vol. 757, pp. 217-241 (2013).
S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier Science (2003).
S.C. Singhal, Solid State Ion., 152-153, 405 (2002); https://doi.org/10.1016/S0167-2738(02)00349-1.
S.C. Singhal, Solid State Ion., 135, 305 (2000); https://doi.org/10.1016/S0167-2738(00)00452-5.
N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat and S. Assabumrungrat, Eng. J. (N.Y.), 13, 65 (2009); https://doi.org/10.4186/ej.2009.13.1.65.
N.P. Brandon, Materials Engineering for Solid Oxide Fuel Cell Technology, Materials Science Forum, Trans Tech Publications, Switzerland vols. 539-543, pp 20-27 (2007).
H. Mahcene, H. Ben-Moussa, H. Bouguetaia, B. Bouchekima and D. Bechki, Fuel Cells J., (2006).
S. McIntosh and R.J. Gorte, Chem. Rev., 104, 4845 (2004); https://doi.org/10.1021/cr020725g.
M. Lo Faro, D. La Rosa, V. Antonucci and A.S. Arico, J. Indian Inst. Sci., 89, 363 (2009).
A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal and J. Vohs, Nat. Mater., 3, 17 (2004); https://doi.org/10.1038/nmat1040.
P. Kalra, R.K. Garg and A. Kumar, J. Energy Technol. Policy, 5, 76 (2015).
P. Kalra, R.K. Garg and A. Kumar, Indian J. Sci. Technol., 10, 1 (2017); https://doi.org/10.17485/ijst/2017/v10i19/113661.
P. Kalra, R.K. Garg and N.K. Grover, Int. J. Chemtech Res., 10, 784 (2017).
U. Pasaogullari and C.Y. Wang, Proc. ECS, 07, 1403 (2003).
F. Gallucci, L. Paturzo and A. Basile, Int. J. Hydrogen Energy, 29, 611 (2004); https://doi.org/10.1016/j.ijhydene.2003.08.003.
F. Calise, M. Dentice d’Accadia, A. Palombo and L. Vanoli, Int. J. Thermodyn., 10, 87 (2007).
F. Calise, M. Dentice d’Accadia, A. Palombo and L. Vanoli, J. Fuel Cell Sci. Technol., 5, 021014 (2008); https://doi.org/10.1115/1.2784296.
M. Andersson, J. Yuan and B. Sundén, Appl. Energy, 87, 1461 (2010); https://doi.org/10.1016/j.apenergy.2009.11.013.
J. Yuan, Chem. Prod. Process Model., 5, Article 12 (2010); https://doi.org/10.2202/1934-2659.1450.
S.Z. Abbas, V. Dupont and T. Mahmud, Int. J. Hydrogen Energy, 42, 18910 (2017); https://doi.org/10.1016/j.ijhydene.2017.05.222.
E.S. Hecht, G.K. Gupta, H. Zhu, A.M. Dean, R.J. Kee, L. Maier and O. Deutschmann, Appl. Catal. A, 295, 40 (2005); https://doi.org/10.1016/j.apcata.2005.08.003.
L. Chibane and B. Djellouli, Int. J. Chem. Eng. Appl., 2, 147 (2011); https://doi.org/10.7763/IJCEA.2011.V2.93.