Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Novel Tetrazole Transition Metal Complexes for Advanced Photonic Applications
Corresponding Author(s) : Rayees Ahmad Malik
Asian Journal of Chemistry,
Vol. 30 No. 3 (2018): Vol 30 Issue 3
Abstract
As tetrazole themselves revealed a rich photochemistry and are piquantly affected by the presence of substituents on tetrazole ring. This exertion explores the harmony of two bidentate ligands-pyridine tetrazole (Hpytz) and pyridine tetrazole-N-oxide (Hpytzo) as "antennae" and their complexes with transition metals (Fe3+, Co2+, Ni2+, Zn2+ and Ru3+). The erections of these pyridine tetrazole metal complexes were elucidated by UV, IR and 1H NMR by using DMSO, acetonitrile as solvents in which these metal complexes persist in undissociated form and also show high melting point >360 ºC. These pyridine tetrazole ligands ("antennae") sensitize efficiently the metal centre and stimulus the absorption window of pyridine tetrazole transition metal complexes, which was appreciably stretched towards the UV-visible region of 400-800 nm. The wavelength of these ligands lemission was found to be amplified upto 522-540 nm (lexcitation = 270 nm) that might enlightens the extremely conjugated unsaturated system which triggers the UV-region and for metal complexes (lexcitation, Fe3+ = 270 nm, Co2+ = 280 nm, Ni2+ = 285 nm, Zn2+ = 270 nm and Ru3+ = 260 nm (lemission, Fe3+ = 522.5 nm, Co2+ = 576 nm, Ni2+ = 554 nm, Zn2+ = 521 nm and Ru3+ = 522 nm). The escalation in lemission of the metal complexes with novel designed tetrazole ligands spectacles a drift on complex formation due to the augmented conjugation and conformation, which might sensitizes luminescence properties as reported with La(III) complexes more proficiently. The fluorescent property revealed with these neutral pyridine tetrazole derivatives stipulate an efficient alternative to that of usual dipicolinate analogues.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V.M. Mukkala, M. Kwiatkowski, J. Kankare and H. Takalo, Helv. Chim. Acta, 76, 893 (1993); https://doi.org/10.1002/hlca.19930760213.
- V.M. Mukkala and J.J. Kankare, Helv. Chim. Acta, 75, 1578 (1992); https://doi.org/10.1002/hlca.19920750512.
- A. Døssing, Eur. J. Inorg. Chem., 2005, 1425 (2005); https://doi.org/10.1002/ejic.200401043.
- (a) S. Petoud, J.C. Bunzli, K.J. Schenk and C. Piguet, Inorg. Chem., 36, 1345 (1997); https://doi.org/10.1021/ic961305a. (b) N. Martin, J.C. Bunzli, V. McKee, C. Piguet and G. Hopfgartner, Inorg. Chem., 37, 577 (1998); https://doi.org/10.1021/ic971401r. (c) S. Comby, D. Imbert, C. Vandevyver and J.C.G. Bunzli, Chem. Eur. J., 13, 936 (2007); https://doi.org/10.1002/chem.200600964. (d) R. Van Deun, P. Fias, P. Nockemann, A. Schepers, T.N. Parac-Vogt, K. Van Hecke, L. Van Meervelt and K. Binnemans, Inorg. Chem., 43, 8461 (2004); https://doi.org/10.1021/ic048736a. (e) N.M. Shavaleev, R. Scopelliti, F. Gumy and J.C.G. Bunzli, Inorg. Chem., 47, 9055 (2008); https://doi.org/10.1021/ic8010585. (f) N. Sabbatini, M. Guardigli and J.M. Lehn, Coord. Chem. Rev., 123, 201 (1993); https://doi.org/10.1016/0010-8545(93)85056-A.
- P. Kadjane, L. Charbonniere, F. Camerel, P.P. Laine and R. Ziessel, J. Fluoresc., 18, 119 (2008); https://doi.org/10.1007/s10895-007-0250-9.
- M. Albrecht, O. Osetska, J. Klankermayer, R. Frohlich, F. Gumy and J.C.G. Bunzli, Chem. Commun., 1834 (2007); https://doi.org/10.1039/B618918K.
- P. Coppo, M. Duati, V.N. Kozhevnikov, J.W. Hofstraat and L. De Cola, Angew. Chem. Int. Ed., 44, 1806 (2005); https://doi.org/10.1002/anie.200461953.
- P.C.R. Soares-Santos, H.I.S. Nogueira, V. Félix, M.G.B. Drew, R.A. Sá Ferreira, L.D. Carlos and T. Trindade, Chem. Mater., 15, 100 (2003); https://doi.org/10.1021/cm021188j.
- G. Pompidor, J. Daleo, J. Vicat, L. Toupet, N. Giraud, R. Kahn and O. Maury, Angew. Chem. Int. Ed., 47, 3388 (2008); https://doi.org/10.1002/anie.200704683.
- J.-C.G. Bünzli and C. Piguet, Chem. Soc. Rev., 34, 1048 (2005); https://doi.org/10.1039/b406082m.
- S. Comby and G.J.-C. Bnzli, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, p. 37 (2007).
- T. Lazarides, D. Sykes, S. Faulkner, A. Barbieri and M.D. Ward, Chem. Eur. J., 14, 9389 (2008); https://doi.org/10.1002/chem.200800600.
- K. Enander, L. Choulier, A.L. Olsson, D.A. Yushchenko, D. Kanmert, A.S. Klymchenko, A.P. Demchenko, Y. Mely and D. Altschuh, Bioconjug. Chem., 19, 1864 (2008); https://doi.org/10.1021/bc800159d.
- (a) A. de Bettencourt-Dias, J. Chem. Soc., Dalton Trans., 2229 (2007); https://doi.org/10.1039/b702341c. (b) S. Faulkner and J.L. Matthews, Comprehensive Coordination Chemistry II, Elsevier, Oxford. vol. 9 (2004); (c) D. Parker, Coord. Chem. Rev., 205, 109 (2000); https://doi.org/10.1016/S0010-8545(00)00241-1. (d) Z.Q. Bian and C.H. Huang, Progress in Electroluminescence Basedon Lanthanide Complexes, Wiley-VCH,Weinheim (2008). (e) L.D. Carlos, R.A.S. Ferreira, V.D. Bermudez and S.L. Ribeiro, Adv. Mater., 21, 509 (2009); https://doi.org/10.1002/adma.200801635.
- R.H. Schmehl and K.S. Schanze, J. Chem. Educ., 60, 784 (1983); https://doi.org/10.1021/ed074p633.
- G. Aromi, L.A. Barrios, O. Roubeau and P. Gamez, Coord. Chem. Rev., 255, 485 (2011); https://doi.org/10.1016/j.ccr.2010.10.038.
- S.A.F. Rostom, H.M.A. Ashour, H.A.A.E. Razik, A.E.F.H.A.E. Fattah and N.N. El-Din, Bioorg. Med. Chem., 17, 2410 (2009); https://doi.org/10.1016/j.bmc.2009.02.004.
- E.S. Andreiadis, D. Imbert, J. Pécaut, R. Demadrille and M. Mazzanti, Dalton Trans., 41, 1268 (2012); https://doi.org/10.1039/C1DT11627D.
- E.S. Andreiadis, R. Demadrille, D. Imbert, J. Pécaut and M. Mazzanti, Chem. Eur. J., 15, 9458 (2009); https://doi.org/10.1002/chem.200900912.
- M. Giraud, E.S. Andreiadis, A.S. Fisyuk, R. Demadrille, D. Imbert and M. Mazzanti, Inorg. Chem., 47, 3952 (2008); https://doi.org/10.1021/ic8005663.
- M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J.-C. RodriguezUbis and J. Kankare, J. Lumin., 75, 149 (1997); https://doi.org/10.1016/S0022-2313(97)00113-0.
- (a) X.Y. Chen, Y. Bretonniere, J. Pecaut, D. Imbert, J.C. Bunzli and M. Mazzanti, Inorg. Chem., 46, 625 (2007); https://doi.org/10.1021/ic061806o. (b) S. Comby, D. Imbert, A.S. Chauvin, J.C.G. Bunzli, L.J. Charbonniere and R.F. Ziessel, Inorg. Chem., 43, 7369 (2004); https://doi.org/10.1021/ic049118x.
- R.J. Herr, Bioorg. Chem., 10, 3379 (2002); https://doi.org/10.1016/S0968-0896(02)00239-0.
- J.A. Bladin, Ber. Dtsch. Chem. Ges., 18, 1544 (1885); https://doi.org/10.1002/cber.188501801335.
- (a) Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto and T. Ohara, J. Am. Chem. Soc., 122, 11021 (2000); https://doi.org/10.1021/ja0023332. (b) A. de Bettencourt-Dias, S. Viswanathan and A. Rollett, J. Am. Chem. Soc., 129, 15436 (2007); https://doi.org/10.1021/ja076485+.
- R. Pavithran, N.S. Saleesh Kumar, S. Biju, M.L.P. Reddy, S.A. Junior and R.O. Freire, Inorg. Chem., 45, 2184 (2006); https://doi.org/10.1021/ic051781d.
- H.F. Brito, O.L. Malta, M.C.F.C. Felinto, E.E.S. Teotonio, J.F.S. Menezes, C.F.B. Silva, C.S. Tomiyama and C.A.A. Carvalho, J. Alloys Comp., 344, 293 (2002); https://doi.org/10.1016/S0925-8388(02)00372-9.
- P.W. Atkins, Physical Chemistry, Oxford University Press, edn 5 (2009).
- W.G. Finnegan, R.A. Henry and R. Lofquist, J. Am. Chem. Soc., 80, 3908 (1958); https://doi.org/10.1021/ja01548a028.
- F. Himo, Z.P. Demko, L. Noodleman and K.B. Sharpless, J. Am. Chem. Soc., 124, 12210 (2002); https://doi.org/10.1021/ja0206644.
- F. Aebischer, Gumy and J.-C.G. Bünzli, Phys. Chem. Chem. Phys., 11, 1346 (2009); https://doi.org/10.1039/b816131c.
- P.A. Brayshaw, J.-C.G. Buenzli, P. Froidevaux, J.M. Harrowfield, Y. Kim and A.N. Sobolev, Inorg. Chem., 34, 2068 (1995); https://doi.org/10.1021/ic00112a019.
- J.P. Leonard, P. Jensen, T. McCabe, J.E. O’Brien, R.D. Peacock, P.E. Kruger and T. Gunnlaugsson, J. Am. Chem. Soc., 129, 10986 (2007); https://doi.org/10.1021/ja073049e.
- A.-S. Chauvin, F. Gumy, D. Imbert and J.-C.G. Bünzli, Spectrosc. Lett., 37, 517 (2004); https://doi.org/10.1081/SL-120039700.
References
V.M. Mukkala, M. Kwiatkowski, J. Kankare and H. Takalo, Helv. Chim. Acta, 76, 893 (1993); https://doi.org/10.1002/hlca.19930760213.
V.M. Mukkala and J.J. Kankare, Helv. Chim. Acta, 75, 1578 (1992); https://doi.org/10.1002/hlca.19920750512.
A. Døssing, Eur. J. Inorg. Chem., 2005, 1425 (2005); https://doi.org/10.1002/ejic.200401043.
(a) S. Petoud, J.C. Bunzli, K.J. Schenk and C. Piguet, Inorg. Chem., 36, 1345 (1997); https://doi.org/10.1021/ic961305a. (b) N. Martin, J.C. Bunzli, V. McKee, C. Piguet and G. Hopfgartner, Inorg. Chem., 37, 577 (1998); https://doi.org/10.1021/ic971401r. (c) S. Comby, D. Imbert, C. Vandevyver and J.C.G. Bunzli, Chem. Eur. J., 13, 936 (2007); https://doi.org/10.1002/chem.200600964. (d) R. Van Deun, P. Fias, P. Nockemann, A. Schepers, T.N. Parac-Vogt, K. Van Hecke, L. Van Meervelt and K. Binnemans, Inorg. Chem., 43, 8461 (2004); https://doi.org/10.1021/ic048736a. (e) N.M. Shavaleev, R. Scopelliti, F. Gumy and J.C.G. Bunzli, Inorg. Chem., 47, 9055 (2008); https://doi.org/10.1021/ic8010585. (f) N. Sabbatini, M. Guardigli and J.M. Lehn, Coord. Chem. Rev., 123, 201 (1993); https://doi.org/10.1016/0010-8545(93)85056-A.
P. Kadjane, L. Charbonniere, F. Camerel, P.P. Laine and R. Ziessel, J. Fluoresc., 18, 119 (2008); https://doi.org/10.1007/s10895-007-0250-9.
M. Albrecht, O. Osetska, J. Klankermayer, R. Frohlich, F. Gumy and J.C.G. Bunzli, Chem. Commun., 1834 (2007); https://doi.org/10.1039/B618918K.
P. Coppo, M. Duati, V.N. Kozhevnikov, J.W. Hofstraat and L. De Cola, Angew. Chem. Int. Ed., 44, 1806 (2005); https://doi.org/10.1002/anie.200461953.
P.C.R. Soares-Santos, H.I.S. Nogueira, V. Félix, M.G.B. Drew, R.A. Sá Ferreira, L.D. Carlos and T. Trindade, Chem. Mater., 15, 100 (2003); https://doi.org/10.1021/cm021188j.
G. Pompidor, J. Daleo, J. Vicat, L. Toupet, N. Giraud, R. Kahn and O. Maury, Angew. Chem. Int. Ed., 47, 3388 (2008); https://doi.org/10.1002/anie.200704683.
J.-C.G. Bünzli and C. Piguet, Chem. Soc. Rev., 34, 1048 (2005); https://doi.org/10.1039/b406082m.
S. Comby and G.J.-C. Bnzli, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, p. 37 (2007).
T. Lazarides, D. Sykes, S. Faulkner, A. Barbieri and M.D. Ward, Chem. Eur. J., 14, 9389 (2008); https://doi.org/10.1002/chem.200800600.
K. Enander, L. Choulier, A.L. Olsson, D.A. Yushchenko, D. Kanmert, A.S. Klymchenko, A.P. Demchenko, Y. Mely and D. Altschuh, Bioconjug. Chem., 19, 1864 (2008); https://doi.org/10.1021/bc800159d.
(a) A. de Bettencourt-Dias, J. Chem. Soc., Dalton Trans., 2229 (2007); https://doi.org/10.1039/b702341c. (b) S. Faulkner and J.L. Matthews, Comprehensive Coordination Chemistry II, Elsevier, Oxford. vol. 9 (2004); (c) D. Parker, Coord. Chem. Rev., 205, 109 (2000); https://doi.org/10.1016/S0010-8545(00)00241-1. (d) Z.Q. Bian and C.H. Huang, Progress in Electroluminescence Basedon Lanthanide Complexes, Wiley-VCH,Weinheim (2008). (e) L.D. Carlos, R.A.S. Ferreira, V.D. Bermudez and S.L. Ribeiro, Adv. Mater., 21, 509 (2009); https://doi.org/10.1002/adma.200801635.
R.H. Schmehl and K.S. Schanze, J. Chem. Educ., 60, 784 (1983); https://doi.org/10.1021/ed074p633.
G. Aromi, L.A. Barrios, O. Roubeau and P. Gamez, Coord. Chem. Rev., 255, 485 (2011); https://doi.org/10.1016/j.ccr.2010.10.038.
S.A.F. Rostom, H.M.A. Ashour, H.A.A.E. Razik, A.E.F.H.A.E. Fattah and N.N. El-Din, Bioorg. Med. Chem., 17, 2410 (2009); https://doi.org/10.1016/j.bmc.2009.02.004.
E.S. Andreiadis, D. Imbert, J. Pécaut, R. Demadrille and M. Mazzanti, Dalton Trans., 41, 1268 (2012); https://doi.org/10.1039/C1DT11627D.
E.S. Andreiadis, R. Demadrille, D. Imbert, J. Pécaut and M. Mazzanti, Chem. Eur. J., 15, 9458 (2009); https://doi.org/10.1002/chem.200900912.
M. Giraud, E.S. Andreiadis, A.S. Fisyuk, R. Demadrille, D. Imbert and M. Mazzanti, Inorg. Chem., 47, 3952 (2008); https://doi.org/10.1021/ic8005663.
M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J.-C. RodriguezUbis and J. Kankare, J. Lumin., 75, 149 (1997); https://doi.org/10.1016/S0022-2313(97)00113-0.
(a) X.Y. Chen, Y. Bretonniere, J. Pecaut, D. Imbert, J.C. Bunzli and M. Mazzanti, Inorg. Chem., 46, 625 (2007); https://doi.org/10.1021/ic061806o. (b) S. Comby, D. Imbert, A.S. Chauvin, J.C.G. Bunzli, L.J. Charbonniere and R.F. Ziessel, Inorg. Chem., 43, 7369 (2004); https://doi.org/10.1021/ic049118x.
R.J. Herr, Bioorg. Chem., 10, 3379 (2002); https://doi.org/10.1016/S0968-0896(02)00239-0.
J.A. Bladin, Ber. Dtsch. Chem. Ges., 18, 1544 (1885); https://doi.org/10.1002/cber.188501801335.
(a) Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto and T. Ohara, J. Am. Chem. Soc., 122, 11021 (2000); https://doi.org/10.1021/ja0023332. (b) A. de Bettencourt-Dias, S. Viswanathan and A. Rollett, J. Am. Chem. Soc., 129, 15436 (2007); https://doi.org/10.1021/ja076485+.
R. Pavithran, N.S. Saleesh Kumar, S. Biju, M.L.P. Reddy, S.A. Junior and R.O. Freire, Inorg. Chem., 45, 2184 (2006); https://doi.org/10.1021/ic051781d.
H.F. Brito, O.L. Malta, M.C.F.C. Felinto, E.E.S. Teotonio, J.F.S. Menezes, C.F.B. Silva, C.S. Tomiyama and C.A.A. Carvalho, J. Alloys Comp., 344, 293 (2002); https://doi.org/10.1016/S0925-8388(02)00372-9.
P.W. Atkins, Physical Chemistry, Oxford University Press, edn 5 (2009).
W.G. Finnegan, R.A. Henry and R. Lofquist, J. Am. Chem. Soc., 80, 3908 (1958); https://doi.org/10.1021/ja01548a028.
F. Himo, Z.P. Demko, L. Noodleman and K.B. Sharpless, J. Am. Chem. Soc., 124, 12210 (2002); https://doi.org/10.1021/ja0206644.
F. Aebischer, Gumy and J.-C.G. Bünzli, Phys. Chem. Chem. Phys., 11, 1346 (2009); https://doi.org/10.1039/b816131c.
P.A. Brayshaw, J.-C.G. Buenzli, P. Froidevaux, J.M. Harrowfield, Y. Kim and A.N. Sobolev, Inorg. Chem., 34, 2068 (1995); https://doi.org/10.1021/ic00112a019.
J.P. Leonard, P. Jensen, T. McCabe, J.E. O’Brien, R.D. Peacock, P.E. Kruger and T. Gunnlaugsson, J. Am. Chem. Soc., 129, 10986 (2007); https://doi.org/10.1021/ja073049e.
A.-S. Chauvin, F. Gumy, D. Imbert and J.-C.G. Bünzli, Spectrosc. Lett., 37, 517 (2004); https://doi.org/10.1081/SL-120039700.