Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Tetragonally Compressed Complexes of Fe(II), Ni(II) and Cu(II)
Corresponding Author(s) : Shivadhar Sharma
Asian Journal of Chemistry,
Vol. 30 No. 1 (2018): Vol 30 Issue 1
Abstract
4’-Nitrobenzaldehyde-4-phenylsemicarbazone and 4’-nitrobenzaldehyde-4-phenylthiosemicarbazone have been used as primary ligands for complexatation with Fe(II), Ni(II) and Cu(II). The complexes have been formulated as [M(NBPS)2X2] and [M(NBPTS)2X2] where, M = Fe(II), Ni(II) and Cu(II), NBPS = 4’-nitrobenzaldehyde-4-phenylsemicarbazone and NBPTS = 4’-nitrobenzaldehyde-4-phenyl thiosemicarbazone and X = CH3COO–. The IR spectra of the metal-complexes in comparison to free ligands reveal that ligands act as monoanionic bidentate forming five membered chelate rings around the metal ion. The electronic spectra of the metal-complexes indicate tetragonally distorted octahedral geometry around the metal ion in complexes. The various crystal field parameters have been derived from the electronic spectra of the complexes. The greater value of Dq(z) in comparison to the Dq(xy) values as well as the negative values of Dt clearly indicate tetragonally compression along Z-axis. The complexes have also been evaluated for their biological activities and it has been observed that biological activities of free ligands enhanced after complex formation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.B. Bersuker, Jahn-Teller Effect and Vibronic Interaction in Modern Chemistry, Plenum Press, New York (1984).
- D. Reinen and M. Atansov, Mag. Reson. Rev., 5, 167 (1971).
- B.N. Figgis, Introduction to Ligand Field, Wiley Eastern Limited, New Delhi, pp. 212-214 (1964).
- W. Zhang, J.L. Loebach, S.R. Wilson and E.N. Jacobsen, J. Am. Chem. Soc., 112, 2801 (1990); https://doi.org/10.1021/ja00163a052.
- F. Yamakura, K. Kobayashi, H. Ue and M. Konno, Eur. J. Biochem., 227, 700 (1995); https://doi.org/10.1111/j.1432-1033.1995.tb20191.x.
- A. Bencini, I. Ciofini and M.G. Uytterhoeven, Inorg. Chim. Acta, 274, 90 (1998); https://doi.org/10.1016/S0020-1693(97)05985-9.
- J.P. Renault, C. Verchère-Béaur, I. Morgenstern-Badarau, F. Yamakura and M. Gerloch, Inorg. Chem., 39, 2666 (2000); https://doi.org/10.1021/ic0000451.
- S. Mossin, H. Weihe and A.-L. Barra, J. Am. Chem. Soc., 124, 8764 (2002); https://doi.org/10.1021/ja012574p.
- S.N. Pandeya, P. Yogeeswari and J.P. Stables, Eur. J. Med. Chem., 35, 879 (2000); https://doi.org/10.1016/S0223-5234(00)01169-7.
- M.R.P. Kurup, B. Varghese, M. Sithambaresan, S. Krishnan, S.R. Sheeja and E. Suresh, Polyhedron, 30, 70 (2011); https://doi.org/10.1016/j.poly.2010.09.030.
- V.L. Siji, M.R. Sudarsanakumar and S. Suma, Transition Met. Chem., 36, 417 (2011); https://doi.org/10.1007/s11243-011-9485-z.
- S.R. Layana, V.L. Sigi, M.R. Sudarasana Kumar, S. Kumar, M.R.P. Kurup and T.S. Sikha, J. Indian Chem. Soc., 93, 577 (2016).
- V.S. Shekhawat, S. Varshney and A.K. Varshney, J. Indian Chem. Soc., 94, 21 (2017).
- S.A. Khan and N. Yusuf, Eur. J. Med. Chem., 44, 2270 (2009); https://doi.org/10.1016/j.ejmech.2008.06.008.
- A.E. Graminha, C. Rodrigues,A.A. Batista, L.R. Teixeira, E.S. Fagundes and H. Beraldo, Spectrochim. Acta A Mol. Biomol. Spectrosc., 69, 1073 (2008); https://doi.org/10.1016/j.saa.2007.06.005.
- B.B. Mahapatra and S.K. Saraf, J. Indian Chem. Soc., 80, 696 (2003).
- S.K. Sinha, D. Kumar, C.M. Chandra, B.N. Subash, S. Kumar and S. Sharma, Int. J. Develop. Res., 7, 12295 (2017).
- A. Sheela and N.L.H. Nair, J. Indian Chem. Soc., 89, 445 (2012).
- R. Ranjan, N. Sinha, S. Kumar, C. M. Chandra and S. Sharma, IRAInt. J. Appl. Sci., 7, 34 (2017).
- D. Das, A.K. Panda, P. Jana, S.B. Patjoshi and A. Mahapatra, J. Indian Chem. Soc., 79, 48 (2002).
- M.K. Singh, A.D.R. Laskar and B. Pant, J. Indian Chem. Soc., 85, 485 (2008).
- A. Karim, R. Rani, R. Ranjan, U. Kumar, V. Kumar and S. Sharma, Asian J. Chem., 29, 626 (2017); https://doi.org/10.14233/ajchem.2017.20286.
- S. Singh, P. Tripathi, O.P. Pandey and S.K. Sen Gupta, J. Indian Chem. Soc., 90, 565 (2013).
- B.K. Rai and R. Kumari, Asian J. Chem., 23, 4625 (2011).
- N.P. Singh, K.L. Anand and J. Singh, Asian J. Chem., 23, 4090 (2011).
- R. Ranjan, R. Rani, S.S. Singh, A.K. Singh Jr. and S. Charma, Asian J. Chem., 22, 7580 (2010).
- A.K. Singh, S.P. Sinha, V. Kumar, S.S. Rai and S. Sharma, Asian J. Chem., 23, 43 (2011).
- R.L. De, R.K. De, I. Banerjee, N. Mandal, N. Ray, J. Mukharjee and E. Keller, J. Indian Chem. Soc., 90, 27 (2013).
- G.S. Sanya, P.K. Nath and R. Ganguly, J. Indian Chem. Soc., 79, 54 (2002).
- M.A. Halcrow, Coord. Chem. Rev., 253, 2493 (2009); https://doi.org/10.1016/j.ccr.2009.07.009.
- M. Matsuda, H. Isozaki and H. Tajima, Chem. Lett., 37, 374 (2008); https://doi.org/10.1246/cl.2008.374.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, edn 2, p. 19 (1984).
- P. Bhatnagar and N.K. Bhatnagar, J. Indian Chem. Soc., 89, 1273 (2012).
- N. Agrawal and A. Singh, J. Indian Chem. Soc., 90, 585 (2013).
- M.A. Hitchman, Inorg. Chem., 11, 2387 (1972); https://doi.org/10.1021/ic50116a019.
- E.I. Solomon and C.J. Ballhausen, Mol. Phys., 29, 279 (1975); https://doi.org/10.1080/00268977500100191.
- A.B.P. Lever, G. London and P.J. McCarthy, Can. J. Chem., 55, 3172 (1977); https://doi.org/10.1139/v77-445.
- B.B. Mahapatra and N. Patel, J. Indian Chem. Soc., 86, 518 (2009).
- D. Kumar, S. Sharma and R.C. Sharma, J. Indian Chem. Soc., 87, 1547 (2010).
- M. Fujiwara, Y. Nakajima, T. Matsushita and T. Shumo, Polyhedron, 4, 1589 (1985); https://doi.org/10.1016/S0277-5387(00)87233-2.
- R.N. Patel,A.P. Patel and K.B. Pandaya, J. Indian Chem. Soc., 78, 6, (2001).
References
I.B. Bersuker, Jahn-Teller Effect and Vibronic Interaction in Modern Chemistry, Plenum Press, New York (1984).
D. Reinen and M. Atansov, Mag. Reson. Rev., 5, 167 (1971).
B.N. Figgis, Introduction to Ligand Field, Wiley Eastern Limited, New Delhi, pp. 212-214 (1964).
W. Zhang, J.L. Loebach, S.R. Wilson and E.N. Jacobsen, J. Am. Chem. Soc., 112, 2801 (1990); https://doi.org/10.1021/ja00163a052.
F. Yamakura, K. Kobayashi, H. Ue and M. Konno, Eur. J. Biochem., 227, 700 (1995); https://doi.org/10.1111/j.1432-1033.1995.tb20191.x.
A. Bencini, I. Ciofini and M.G. Uytterhoeven, Inorg. Chim. Acta, 274, 90 (1998); https://doi.org/10.1016/S0020-1693(97)05985-9.
J.P. Renault, C. Verchère-Béaur, I. Morgenstern-Badarau, F. Yamakura and M. Gerloch, Inorg. Chem., 39, 2666 (2000); https://doi.org/10.1021/ic0000451.
S. Mossin, H. Weihe and A.-L. Barra, J. Am. Chem. Soc., 124, 8764 (2002); https://doi.org/10.1021/ja012574p.
S.N. Pandeya, P. Yogeeswari and J.P. Stables, Eur. J. Med. Chem., 35, 879 (2000); https://doi.org/10.1016/S0223-5234(00)01169-7.
M.R.P. Kurup, B. Varghese, M. Sithambaresan, S. Krishnan, S.R. Sheeja and E. Suresh, Polyhedron, 30, 70 (2011); https://doi.org/10.1016/j.poly.2010.09.030.
V.L. Siji, M.R. Sudarsanakumar and S. Suma, Transition Met. Chem., 36, 417 (2011); https://doi.org/10.1007/s11243-011-9485-z.
S.R. Layana, V.L. Sigi, M.R. Sudarasana Kumar, S. Kumar, M.R.P. Kurup and T.S. Sikha, J. Indian Chem. Soc., 93, 577 (2016).
V.S. Shekhawat, S. Varshney and A.K. Varshney, J. Indian Chem. Soc., 94, 21 (2017).
S.A. Khan and N. Yusuf, Eur. J. Med. Chem., 44, 2270 (2009); https://doi.org/10.1016/j.ejmech.2008.06.008.
A.E. Graminha, C. Rodrigues,A.A. Batista, L.R. Teixeira, E.S. Fagundes and H. Beraldo, Spectrochim. Acta A Mol. Biomol. Spectrosc., 69, 1073 (2008); https://doi.org/10.1016/j.saa.2007.06.005.
B.B. Mahapatra and S.K. Saraf, J. Indian Chem. Soc., 80, 696 (2003).
S.K. Sinha, D. Kumar, C.M. Chandra, B.N. Subash, S. Kumar and S. Sharma, Int. J. Develop. Res., 7, 12295 (2017).
A. Sheela and N.L.H. Nair, J. Indian Chem. Soc., 89, 445 (2012).
R. Ranjan, N. Sinha, S. Kumar, C. M. Chandra and S. Sharma, IRAInt. J. Appl. Sci., 7, 34 (2017).
D. Das, A.K. Panda, P. Jana, S.B. Patjoshi and A. Mahapatra, J. Indian Chem. Soc., 79, 48 (2002).
M.K. Singh, A.D.R. Laskar and B. Pant, J. Indian Chem. Soc., 85, 485 (2008).
A. Karim, R. Rani, R. Ranjan, U. Kumar, V. Kumar and S. Sharma, Asian J. Chem., 29, 626 (2017); https://doi.org/10.14233/ajchem.2017.20286.
S. Singh, P. Tripathi, O.P. Pandey and S.K. Sen Gupta, J. Indian Chem. Soc., 90, 565 (2013).
B.K. Rai and R. Kumari, Asian J. Chem., 23, 4625 (2011).
N.P. Singh, K.L. Anand and J. Singh, Asian J. Chem., 23, 4090 (2011).
R. Ranjan, R. Rani, S.S. Singh, A.K. Singh Jr. and S. Charma, Asian J. Chem., 22, 7580 (2010).
A.K. Singh, S.P. Sinha, V. Kumar, S.S. Rai and S. Sharma, Asian J. Chem., 23, 43 (2011).
R.L. De, R.K. De, I. Banerjee, N. Mandal, N. Ray, J. Mukharjee and E. Keller, J. Indian Chem. Soc., 90, 27 (2013).
G.S. Sanya, P.K. Nath and R. Ganguly, J. Indian Chem. Soc., 79, 54 (2002).
M.A. Halcrow, Coord. Chem. Rev., 253, 2493 (2009); https://doi.org/10.1016/j.ccr.2009.07.009.
M. Matsuda, H. Isozaki and H. Tajima, Chem. Lett., 37, 374 (2008); https://doi.org/10.1246/cl.2008.374.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, edn 2, p. 19 (1984).
P. Bhatnagar and N.K. Bhatnagar, J. Indian Chem. Soc., 89, 1273 (2012).
N. Agrawal and A. Singh, J. Indian Chem. Soc., 90, 585 (2013).
M.A. Hitchman, Inorg. Chem., 11, 2387 (1972); https://doi.org/10.1021/ic50116a019.
E.I. Solomon and C.J. Ballhausen, Mol. Phys., 29, 279 (1975); https://doi.org/10.1080/00268977500100191.
A.B.P. Lever, G. London and P.J. McCarthy, Can. J. Chem., 55, 3172 (1977); https://doi.org/10.1139/v77-445.
B.B. Mahapatra and N. Patel, J. Indian Chem. Soc., 86, 518 (2009).
D. Kumar, S. Sharma and R.C. Sharma, J. Indian Chem. Soc., 87, 1547 (2010).
M. Fujiwara, Y. Nakajima, T. Matsushita and T. Shumo, Polyhedron, 4, 1589 (1985); https://doi.org/10.1016/S0277-5387(00)87233-2.
R.N. Patel,A.P. Patel and K.B. Pandaya, J. Indian Chem. Soc., 78, 6, (2001).