Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Novel Method for Preparation of Carboxymethyl Chitosan by Microwave Irradiation
Corresponding Author(s) : Tungabidya Maharana
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
A novel method for the synthesis of carboxymethyl chitosan (CMC) has been adopted in the present investigation by the use of microwave irradiation. Carboxymethylation of chitosan, a renewable natural resource, has been carried out in an alkaline medium by using monochloroacetic acid. The effect of various parameters such as amount of chitosan, monochloroacetic acid, microwave power and temperature has been studied. Microwave irradiation increases the reaction speed and also results in high yield. Prepared carboxymethyl chitosan is highly soluble in water whereas chitosan is insoluble in neutral water. This water solubility property enhances the biological application of carboxymethyl chitosan. The obtained carboxymethyl chitosan is characterized by FTIR, NMR and TG analysis. Due to its wide range of solubility, carboxymethyl chitosan is extensively used in drug delivery systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.L. Bukzem, R. Signini, D.M. dos Santos, L.M. Lião and D.P.R. Ascheri, Int. J. Biol. Macromol., 85, 615 (2016); https://doi.org/10.1016/j.ijbiomac.2016.01.017.
- V. Patrulea, N. Hirt-Burri, A. Jeannerat, L.A. Applegate, V. Ostafe, O. Jordan and G. Borchard, Carbohydr. Polym., 142, 114 (2016); https://doi.org/10.1016/j.carbpol.2016.01.045.
- M. Zheng, B. Han, Y. Yang and W. Liu, Carbohydr. Polym., 86, 231 (2011); https://doi.org/10.1016/j.carbpol.2011.04.038.
- H. Sashiwa, N. Kawasaki, A. Nakayama, E. Muraki, N. Yamamoto and S. Aiba, Biomacromolecules, 3, 1126 (2002); https://doi.org/10.1021/bm0200480.
- Q. Zhang, M. Zhai, J. Peng, Y. Hao and J. Li, Nucl. Instrum. Methods Phys. Res. B, 286, 334 (2012); https://doi.org/10.1016/j.nimb.2012.01.005.
- G. Cui, X. Wang, J. Xun and T. Lou, Int. Biodeter. Biodegrad., 123, 269 (2017); https://doi.org/10.1016/j.ibiod.2017.07.011.
- Y. Yi, S. Xu, H. Sun, D. Chang, Y. Yin, H. Zheng, H. Xu and Y. Lou, Carbohydr. Polym., 86, 1007 (2011); https://doi.org/10.1016/j.carbpol.2011.05.057.
- L. Upadhyaya, J. Singh, V. Agarwal and R.P. Tewari, Carbohydr. Polym., 91, 452 (2013); https://doi.org/10.1016/j.carbpol.2012.07.076.
- H. Tozaki, T. Odoriba, N. Okada, T. Fujita, A. Terabe, T. Suzuki, S. Okabe, S. Muranishi and A. Yamamoto, J. Control. Rel., 82, 51 (2002); https://doi.org/10.1016/S0168-3659(02)00084-6.
- K.M. Park, J.W. Bae, Y.K. Joung, J.W. Shin and K.D. Park, Colloids Surf. B Biointerfaces, 63, 1 (2008); https://doi.org/10.1016/j.colsurfb.2007.10.024.
- Y. Wen, Z. Tan, F. Sun, L. Sheng, X. Zhang and F. Yao, Mater. Sci. Eng. C, 32, 2026 (2012); https://doi.org/10.1016/j.msec.2012.05.019.
- E. Zhang, R. Xing, S. Liu, K. Li, Y. Qin, H. Yu and P. Li, Int. J. Biol. Macromol., 101, 1012 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.195.
- D. Debritto, Polym. Degrad. Stab., 84, 353 (2004); https://doi.org/10.1016/j.polymdegradstab.2004.02.005.
- S.S. Vaghani, M.M. Patel, C.S. Satish, K.M. Patel and N.P. Jivani, Bull. Mater. Sci., 35, 1133 (2012); https://doi.org/10.1007/s12034-012-0413-4.
- Y. Luo, Z. Teng, X. Wang and Q. Wang, Food Hydrocoll., 31, 332 (2013); https://doi.org/10.1016/j.foodhyd.2012.11.011.
- N. Noshirvani, B. Ghanbarzadeh, R.R. Mokarram, M. Hashemi and V. Coma, Int. J. Biol. Macromol., 99, 530 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.007.
References
A.L. Bukzem, R. Signini, D.M. dos Santos, L.M. Lião and D.P.R. Ascheri, Int. J. Biol. Macromol., 85, 615 (2016); https://doi.org/10.1016/j.ijbiomac.2016.01.017.
V. Patrulea, N. Hirt-Burri, A. Jeannerat, L.A. Applegate, V. Ostafe, O. Jordan and G. Borchard, Carbohydr. Polym., 142, 114 (2016); https://doi.org/10.1016/j.carbpol.2016.01.045.
M. Zheng, B. Han, Y. Yang and W. Liu, Carbohydr. Polym., 86, 231 (2011); https://doi.org/10.1016/j.carbpol.2011.04.038.
H. Sashiwa, N. Kawasaki, A. Nakayama, E. Muraki, N. Yamamoto and S. Aiba, Biomacromolecules, 3, 1126 (2002); https://doi.org/10.1021/bm0200480.
Q. Zhang, M. Zhai, J. Peng, Y. Hao and J. Li, Nucl. Instrum. Methods Phys. Res. B, 286, 334 (2012); https://doi.org/10.1016/j.nimb.2012.01.005.
G. Cui, X. Wang, J. Xun and T. Lou, Int. Biodeter. Biodegrad., 123, 269 (2017); https://doi.org/10.1016/j.ibiod.2017.07.011.
Y. Yi, S. Xu, H. Sun, D. Chang, Y. Yin, H. Zheng, H. Xu and Y. Lou, Carbohydr. Polym., 86, 1007 (2011); https://doi.org/10.1016/j.carbpol.2011.05.057.
L. Upadhyaya, J. Singh, V. Agarwal and R.P. Tewari, Carbohydr. Polym., 91, 452 (2013); https://doi.org/10.1016/j.carbpol.2012.07.076.
H. Tozaki, T. Odoriba, N. Okada, T. Fujita, A. Terabe, T. Suzuki, S. Okabe, S. Muranishi and A. Yamamoto, J. Control. Rel., 82, 51 (2002); https://doi.org/10.1016/S0168-3659(02)00084-6.
K.M. Park, J.W. Bae, Y.K. Joung, J.W. Shin and K.D. Park, Colloids Surf. B Biointerfaces, 63, 1 (2008); https://doi.org/10.1016/j.colsurfb.2007.10.024.
Y. Wen, Z. Tan, F. Sun, L. Sheng, X. Zhang and F. Yao, Mater. Sci. Eng. C, 32, 2026 (2012); https://doi.org/10.1016/j.msec.2012.05.019.
E. Zhang, R. Xing, S. Liu, K. Li, Y. Qin, H. Yu and P. Li, Int. J. Biol. Macromol., 101, 1012 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.195.
D. Debritto, Polym. Degrad. Stab., 84, 353 (2004); https://doi.org/10.1016/j.polymdegradstab.2004.02.005.
S.S. Vaghani, M.M. Patel, C.S. Satish, K.M. Patel and N.P. Jivani, Bull. Mater. Sci., 35, 1133 (2012); https://doi.org/10.1007/s12034-012-0413-4.
Y. Luo, Z. Teng, X. Wang and Q. Wang, Food Hydrocoll., 31, 332 (2013); https://doi.org/10.1016/j.foodhyd.2012.11.011.
N. Noshirvani, B. Ghanbarzadeh, R.R. Mokarram, M. Hashemi and V. Coma, Int. J. Biol. Macromol., 99, 530 (2017); https://doi.org/10.1016/j.ijbiomac.2017.03.007.