Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectral Characterization and Antimicrobial Studies of Transition Metal Complexes of Benzothiazole Based Schiff Bases
Corresponding Author(s) : P.K. Das
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
A series of transition metal complexes of the type [ML2]·nH2O, where L = 2-(benzothiazolyl-2'- amino)iminoethanone (HBAE), 2-(benzothiazolyl-2'-amino)imino-1,2-dimethylethanone (HBME), 2-(benzothiazolyl-2'-amino)imino-1,2-diphenylethanone (HBPE), M = Cu(II), Co(II), Ni(II) and Zn(II), have been synthesized and characterized on the basis of spectral studies and thermal analyses. The spectroscopic data confirmed octahedral geometrical structures for all the complexes. All these Schiff bases and their metal complexes have been screened for their antibacterial activity against some pathogenic bacteria species (Bacillus subtilis, Bacillus stearothermophilus, Escherichia coli and Salmonella typhi) and antifungal activity against some pathogenic fungi strains (Aspergillus niger and Aspergillus flavus).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Muresan, L.S. Sabrina, V. Muresan and C.I. Lepadatu, J. Indian Chem. Soc., 79, 412 (2002).
- P.R. Reddy and A.M. Reddy, Indian J. Chem., 41A, 2083 (2002).
- N. Singh, R.N. Patel and K.K. Sukla, Indian J. Chem., 41A, 1883 (2003).
- B.P. Barnawal, T. Gupta and A.K. Singh, Indian J. Chem., 42A, 1905 (2003).
- H.A. Tang, L.F. Wang and R.D. Yang, Transition Met. Chem., 28, 395 (2003); https://doi.org/10.1023/A:1023609724972.
- R. Kumar, R. Johar and A.K. Aggarwal, Eur. J. Chem., 3, 57 (2012); https://doi.org/10.5155/eurjchem.3.1.57-64.448.
- K.W. Tan, H.L. Seng, F.S. Lim, S.-C. Cheah, C.H. Ng, K.S. Koo, M.R. Mustafa, S.W. Ng and M.J. Maah, Polyhedron, 38, 275 (2012); https://doi.org/10.1016/j.poly.2012.03.014.
- R. Prabhakaran, A. Geetha, M. Thilagavathi, R. Karvembu, V. Krishnan, H. Bertagnolli and K. Natarajan, J. Inorg. Biochem., 98, 2131 (2004); https://doi.org/10.1016/j.jinorgbio.2004.09.020.
- S. Dhar, M. Nethaji and A.R. Chakravarty, Inorg. Chim. Acta, 358, 2437 (2005); https://doi.org/10.1016/j.ica.2005.02.006.
- S. Kini, S.P. Swain and A.M. Gandhi, Indian J. Pharm. Sci., 69, 46 (2007); https://doi.org/10.4103/0250-474X.32107.
- V.S. Padalkar, B.N. Borse, V.D. Gupta, K.R. Phatangare, V.S. Patil, P.G. Umape and N. Sekar, Arab. J. Chem., 9, S1125 (2016); https://doi.org/10.1016/j.arabjc.2011.12.006.
- H. Kaur, S. Kumar, I. Singh, K.K. Saxena and A. Kumar, Dig. J. Nanomater. Biostruct., 5, 67 (2010).
- B.N. Amit, R.V. Kamath and G.B. Khadse, Indian J. Heterocycl. Chem., 9, 309 (2000).
- L. Racane, S.K. Pavelic, R. Nhili, S. Depauw, C. Paul-Constant, I. Ratkaj, M.H. David-Cordonnier, K. Pavelic, V. Tralic-Kulenovic and G. Karminski-Zamola, Eur. J. Med. Chem., 63, 882 (2013); https://doi.org/10.1016/j.ejmech.2013.02.026.
- R.M. Kumbhare, T.L. Dadmal, R. Pamanji, U.B. Kosurkar, L.R. Velatooru, K. Appalanaidu, Y. Khageswara Rao and J. Venkateswara Rao, J. V. Med. Chem. Res., 23, 4404 (2014); https://doi.org/10.1007/s00044-014-1006-0.
- M. Chaudhary, D. Pareek, P.K. Pareek, R. Kant, K.G. Ojha and A. Pareek, Bull. Korean Chem. Soc., 32, 131 (2011); https://doi.org/10.5012/bkcs.2011.32.1.131.
- P.K. Sahu, P.K. Sahu and D.D. Agarwal, J. Indian Chem. Soc., 92, 169 (2015).
- P.C. Sharma, A. Jain, M.S. Yar, R. Pahwa, J. Singh and S. Goel, Arab. J. Chem., 8, 671 (2015); https://doi.org/10.1016/j.arabjc.2011.04.008.
- A. Catalano, A. Carocci, I. Defrenza, M. Muraglia, A. Carrieri, F. Van Bambeke, A. Rosato, F. Corbo and C. Franchini, Eur. J. Med. Chem., 64, 357 (2013); https://doi.org/10.1016/j.ejmech.2013.03.064.
- S.R. Nagarajan, G.A. De Crescenzo, D.P. Getman, H.-F. Lu, J.A. Sikorski, J.L. Walker, J.J. McDonald, K.A. Houseman, G.P. Kocan, N. Kishore, P.P. Mehta, C.L. Funkes-Shippy and L. Blystone, Bioorg. Med. Chem. Lett., 11, 4769 (2003); https://doi.org/10.1016/j.bmc.2003.07.001.
- F. Piscitelli, C. Ballatore and A.B. Smith III, Bioorg. Med. Chem. Lett., 20, 644 (2010); https://doi.org/10.1016/j.bmcl.2009.11.055.
- D.C. Dash, A. Mahapatra, R.K. Mohapatra, S. Ghosh and P. Naik, Indian J. Chem., 47A, 1009 (2008).
- R.K. Mohapatra, M. Dash, S.B. Patjoshi and D.C. Dash, Acta Chim. Pharm. Ind., 2, 156 (2012).
- R.K. Mohapatra and D.C. Dash, J. Korean Chem. Soc., 54, 395 (2010); https://doi.org/10.5012/jkcs.2010.54.4.395.
- D.C. Dash, A. Mahapatra, P. Naik, R.K. Mohapatra and S.K. Naik, J. Korean Chem. Soc., 55, 412 (2011); https://doi.org/10.5012/jkcs.2011.55.3.412.
- R.K. Mohapatra, U.K. Mishra, S.K. Mishra, A. Mahapatra and D.C. Dash, J. Korean Chem. Soc, 55, 926 (2011); https://doi.org/10.5012/jkcs.2011.55.6.926.
- R.K. Mohapatra, M. Dash, U.K. Mishra, A. Mahapatra and D.C. Dash, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 44, 642 (2014); https://doi.org/10.1080/15533174.2013.776592.
- A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longmans and ELBS, edn 3 (1969).
- C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press: New York and London, p. 245 (1963).
- K. Nakamato, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley: New York, p. 166 (1963).
- A.V. Nikolaev, V.A. Lagvienko and I. Myachina, Thermal Analysis, Academic Press: New York (1969).
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience: New York, p. 725 (1962).
- C.J. Ballhausen and C.K. Jorgensen, Acta Chem. Scand., 9, 397 (1955); https://doi.org/10.3891/acta.chem.scand.09-0397.
- D. Nagakavitha and K.H. Reddy, J. Indian Chem. Soc., 92, 71 (2015).
- N. Raman, A. Kulandaisamy and K. Jayesubramanian, Indian J. Chem., 41A, 942 (2002).
- R.L. Dutta and A. Syamal, Elements of Magnetochemistry, Affiliated East-West Press Pvt. Ltd.: New Delhi, edn 2, p. 227 (2010).
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publication: New York (1968).
- C.J. Balhausen, An Introduction to Ligand Field, McGraw Hill: New York (1962).
- Z.H. Chohan, H. Pervez, A. Rauf and C.T. Supuran, Met. Based Drugs, 8, 42 (2002).
- Z.H. Chohan, A. Scozzafava and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 18, 259 (2003); https://doi.org/10.1080/1475636031000071817.
- N.E.A. El-Gamel, J. Coord. Chem., 63, 534 (2010); https://doi.org/10.1080/00958970903494157.
- M.M. E. Shakdofa, A. N. Al-Hakimi, F. A. Elsaied, S. O. M. Alasbahi and A. M. A. Alkwlini, Bull. Chem. Soc. Ethiop., 31, 75 (2017); https://doi.org/10.4314/bcse.v31i1.7.
References
N. Muresan, L.S. Sabrina, V. Muresan and C.I. Lepadatu, J. Indian Chem. Soc., 79, 412 (2002).
P.R. Reddy and A.M. Reddy, Indian J. Chem., 41A, 2083 (2002).
N. Singh, R.N. Patel and K.K. Sukla, Indian J. Chem., 41A, 1883 (2003).
B.P. Barnawal, T. Gupta and A.K. Singh, Indian J. Chem., 42A, 1905 (2003).
H.A. Tang, L.F. Wang and R.D. Yang, Transition Met. Chem., 28, 395 (2003); https://doi.org/10.1023/A:1023609724972.
R. Kumar, R. Johar and A.K. Aggarwal, Eur. J. Chem., 3, 57 (2012); https://doi.org/10.5155/eurjchem.3.1.57-64.448.
K.W. Tan, H.L. Seng, F.S. Lim, S.-C. Cheah, C.H. Ng, K.S. Koo, M.R. Mustafa, S.W. Ng and M.J. Maah, Polyhedron, 38, 275 (2012); https://doi.org/10.1016/j.poly.2012.03.014.
R. Prabhakaran, A. Geetha, M. Thilagavathi, R. Karvembu, V. Krishnan, H. Bertagnolli and K. Natarajan, J. Inorg. Biochem., 98, 2131 (2004); https://doi.org/10.1016/j.jinorgbio.2004.09.020.
S. Dhar, M. Nethaji and A.R. Chakravarty, Inorg. Chim. Acta, 358, 2437 (2005); https://doi.org/10.1016/j.ica.2005.02.006.
S. Kini, S.P. Swain and A.M. Gandhi, Indian J. Pharm. Sci., 69, 46 (2007); https://doi.org/10.4103/0250-474X.32107.
V.S. Padalkar, B.N. Borse, V.D. Gupta, K.R. Phatangare, V.S. Patil, P.G. Umape and N. Sekar, Arab. J. Chem., 9, S1125 (2016); https://doi.org/10.1016/j.arabjc.2011.12.006.
H. Kaur, S. Kumar, I. Singh, K.K. Saxena and A. Kumar, Dig. J. Nanomater. Biostruct., 5, 67 (2010).
B.N. Amit, R.V. Kamath and G.B. Khadse, Indian J. Heterocycl. Chem., 9, 309 (2000).
L. Racane, S.K. Pavelic, R. Nhili, S. Depauw, C. Paul-Constant, I. Ratkaj, M.H. David-Cordonnier, K. Pavelic, V. Tralic-Kulenovic and G. Karminski-Zamola, Eur. J. Med. Chem., 63, 882 (2013); https://doi.org/10.1016/j.ejmech.2013.02.026.
R.M. Kumbhare, T.L. Dadmal, R. Pamanji, U.B. Kosurkar, L.R. Velatooru, K. Appalanaidu, Y. Khageswara Rao and J. Venkateswara Rao, J. V. Med. Chem. Res., 23, 4404 (2014); https://doi.org/10.1007/s00044-014-1006-0.
M. Chaudhary, D. Pareek, P.K. Pareek, R. Kant, K.G. Ojha and A. Pareek, Bull. Korean Chem. Soc., 32, 131 (2011); https://doi.org/10.5012/bkcs.2011.32.1.131.
P.K. Sahu, P.K. Sahu and D.D. Agarwal, J. Indian Chem. Soc., 92, 169 (2015).
P.C. Sharma, A. Jain, M.S. Yar, R. Pahwa, J. Singh and S. Goel, Arab. J. Chem., 8, 671 (2015); https://doi.org/10.1016/j.arabjc.2011.04.008.
A. Catalano, A. Carocci, I. Defrenza, M. Muraglia, A. Carrieri, F. Van Bambeke, A. Rosato, F. Corbo and C. Franchini, Eur. J. Med. Chem., 64, 357 (2013); https://doi.org/10.1016/j.ejmech.2013.03.064.
S.R. Nagarajan, G.A. De Crescenzo, D.P. Getman, H.-F. Lu, J.A. Sikorski, J.L. Walker, J.J. McDonald, K.A. Houseman, G.P. Kocan, N. Kishore, P.P. Mehta, C.L. Funkes-Shippy and L. Blystone, Bioorg. Med. Chem. Lett., 11, 4769 (2003); https://doi.org/10.1016/j.bmc.2003.07.001.
F. Piscitelli, C. Ballatore and A.B. Smith III, Bioorg. Med. Chem. Lett., 20, 644 (2010); https://doi.org/10.1016/j.bmcl.2009.11.055.
D.C. Dash, A. Mahapatra, R.K. Mohapatra, S. Ghosh and P. Naik, Indian J. Chem., 47A, 1009 (2008).
R.K. Mohapatra, M. Dash, S.B. Patjoshi and D.C. Dash, Acta Chim. Pharm. Ind., 2, 156 (2012).
R.K. Mohapatra and D.C. Dash, J. Korean Chem. Soc., 54, 395 (2010); https://doi.org/10.5012/jkcs.2010.54.4.395.
D.C. Dash, A. Mahapatra, P. Naik, R.K. Mohapatra and S.K. Naik, J. Korean Chem. Soc., 55, 412 (2011); https://doi.org/10.5012/jkcs.2011.55.3.412.
R.K. Mohapatra, U.K. Mishra, S.K. Mishra, A. Mahapatra and D.C. Dash, J. Korean Chem. Soc, 55, 926 (2011); https://doi.org/10.5012/jkcs.2011.55.6.926.
R.K. Mohapatra, M. Dash, U.K. Mishra, A. Mahapatra and D.C. Dash, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 44, 642 (2014); https://doi.org/10.1080/15533174.2013.776592.
A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longmans and ELBS, edn 3 (1969).
C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press: New York and London, p. 245 (1963).
K. Nakamato, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley: New York, p. 166 (1963).
A.V. Nikolaev, V.A. Lagvienko and I. Myachina, Thermal Analysis, Academic Press: New York (1969).
F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience: New York, p. 725 (1962).
C.J. Ballhausen and C.K. Jorgensen, Acta Chem. Scand., 9, 397 (1955); https://doi.org/10.3891/acta.chem.scand.09-0397.
D. Nagakavitha and K.H. Reddy, J. Indian Chem. Soc., 92, 71 (2015).
N. Raman, A. Kulandaisamy and K. Jayesubramanian, Indian J. Chem., 41A, 942 (2002).
R.L. Dutta and A. Syamal, Elements of Magnetochemistry, Affiliated East-West Press Pvt. Ltd.: New Delhi, edn 2, p. 227 (2010).
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publication: New York (1968).
C.J. Balhausen, An Introduction to Ligand Field, McGraw Hill: New York (1962).
Z.H. Chohan, H. Pervez, A. Rauf and C.T. Supuran, Met. Based Drugs, 8, 42 (2002).
Z.H. Chohan, A. Scozzafava and C.T. Supuran, J. Enzyme Inhib. Med. Chem., 18, 259 (2003); https://doi.org/10.1080/1475636031000071817.
N.E.A. El-Gamel, J. Coord. Chem., 63, 534 (2010); https://doi.org/10.1080/00958970903494157.
M.M. E. Shakdofa, A. N. Al-Hakimi, F. A. Elsaied, S. O. M. Alasbahi and A. M. A. Alkwlini, Bull. Chem. Soc. Ethiop., 31, 75 (2017); https://doi.org/10.4314/bcse.v31i1.7.