Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Iron Tartrate Nanoparticles
Corresponding Author(s) : U.M. Lathiya
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
Considering various applications of iron tartrate, this article aims to synthesize iron tartrate nanoparticles by wet chemical technique using iron(II) sulphate, tartaric acid, sodium metasilicate and surfactant Triton X-100. The presence of sodium metasilicate facilitates the reaction between iron(II) sulphate and tartaric acid to form iron tartrate. The powder XRD study indicates orthorhombic structure and the average crystallite size is found to be 35.28 nm by employing Scherrer's formula. The TEM images indicate nearly spherical morphology with size varying from 30 to 50 nm. The thermal analysis suggests that the nanoparticles are stable up to 100 ºC and then decomposes through various stages. The dielectric study is carried out on pelletized samples in the range from 10 Hz to 10 MHz at various temperatures from 303 to 373 K. The dielectric constant and dielectric loss decreases with frequency increases. The a.c. conductivity increased with increasing frequency. The Jonscher's power law is studied for a.c. conductivity and correlated barrier hopping model mechanism is found to be prevailing for a.c. conduction. The activation energy for electrical conduction is decreasing with increasing frequency. The temperature dependent magnetization measurements under zero field cooled (ZFC) and field cooled (FC) condition has indicated the paramagnetic nature of the sample at room temperature as well as low temperature. The results are compared with the bulk crystalline material available in the literature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.D. Covington, Tanning Chemistry, Cambridge (2009).
- E.F. George, M.A. Hall and G.J. Deklerk, Plant Propagation by Tissue Culture, Springer (2008).
- R. Strebel, J. Vasku and H. Selye, J. Pharm. Pharmacol., 14, 658 (1962); https://doi.org/10.1111/j.2042-7158.1962.tb11156.x.
- A.C. Clark, D.A. Dias, T.A. Smith, K.P. Ghiggino and G.R. Scollary, J. Agric. Food Chem., 59, 3575 (2011); https://doi.org/10.1021/jf104897z.
- P. Grant-Preece, C. Barril, L.M. Schmidtke and A.C. Clark, J. Agric. Food Chem., 65, 2383 (2017); https://doi.org/10.1021/acs.jafc.6b04669.
- S. Joseph, H.S. Joshi and M.J. Joshi, Cryst. Res. Technol., 32, 339 (1997); https://doi.org/10.1002/crat.2170320218.
- S. Joseph, H.H. Joshi and M.J. Joshi, Indian J. Pure Appl. Phys., 39, 471 (2001).
- S.J. Joshi, B.B. Parekh, K.D. Vohra and M.J. Joshi, Bull. Mater. Sci., 29, 307 (2006); https://doi.org/10.1007/BF02706501.
- S.J. Joshi, K.P. Tank, B.B. Parekh and M.J. Joshi, Cryst. Res. Technol., 45, 303 (2010); https://doi.org/10.1002/crat.200900152.
- U.V. Tarpara, P.M. Vyas and M.J. Joshi, Int. J. Nanosci., 14, 1550013 (2015); https://doi.org/10.1142/S0219581X15500131.
- P.D. Solanki, S.R. Vasant and M.J. Joshi, Int. J. Appl. Ceram. Technol., 11, 663 (2014); https://doi.org/10.1111/ijac.12227.
- L. Kumar, P. Kumar, A. Narayan and M. Kar, Int. Nano Lett., 3, 8 (2013); https://doi.org/10.1186/2228-5326-3-8.
- V. Mathivanan and M. Haris, PRAMANA-J. Phys., 81, 177 (2013); https://doi.org/10.1007/s12043-013-0564-x.
- K.P. Tank, Ph.D. Thesis, Department of Physics, Saurashtra University, Rajkot, India (2013).
- S.R. Vasant, Ph.D. Thesis, Department of Physics, Saurashtra University, Rajkot, India (2015).
- F.M. Reicha, M. El-Hiti, A.Z. El-Sonbati and M.A. Diab, J. Phys. D Appl. Phys., 24, 369 (1991); https://doi.org/10.1088/0022-3727/24/3/020.
- K. Somashekhara Udupa, P. Mohan Rao, S. Aithal, A.P. Bhat and D.K. Avasthi, Bull. Mater. Sci., 20, 1069 (1997); https://doi.org/10.1007/BF02745057.
- M. Shakir, B.K. Singh, R.K. Gaur, B. Kumar, G. Bhagavannarayana and M.A. Wahab, Chalcog. Lett., 6, 655 (2009).
- M. Ravi, S. Song, K. Gu, J. Tang and Z. Zhang, Mater. Sci. Eng. B, 195, 74 (2015); https://doi.org/10.1016/j.mseb.2015.02.003.
- M.N. Kamalasanan, N.D. Kumar and S. Chandra, J. Appl. Phys., 74, 5679 (1993); https://doi.org/10.1063/1.354183.
- K. Funke, Prog. Solid State Chem., 22, 111 (1993); https://doi.org/10.1016/0079-6786(93)90002-9.
- A.K. Roy, K. Prasad and A. Prasad, ISRN Ceram., Article ID 369670 (2013); https://doi.org/10.1155/2013/369670.
- J.O. Lopez and R.G. Aguilar, Rev. Mex. Fis., 49, 529 (2003).
- S.R. Elliott, Adv. Phys., 36, 135 (1987); https://doi.org/10.1080/00018738700101971.
- S. Upadhyay, A.K. Sahu, D. Kumar and O. Parkash, J. Appl. Phys., 84, 828 (1998); https://doi.org/10.1063/1.368143.
- S.R. Elliott, Philos. Mag., 36, 1291 (1977); https://doi.org/10.1080/14786437708238517.
- G.E. Pike, Phys. Rev. B, 6, 1572 (1972); https://doi.org/10.1103/PhysRevB.6.1572.
- H. Mahamoud, B. Louati, F. Hlel and K. Guidara, Bull. Mater. Sci., 34, 1069 (2011); https://doi.org/10.1007/s12034-011-0163-8.
- C. Kittel, Introduction to Solid State Physics, Wiley Eastern: New Delhi, edn 7 (2007).
- S. Joseph, H.H. Joshi, M.J. Joshi, N.V. Patel and M. Sarcar, Indian J. Phys., 71A, 643 (1997).
- I. Bashar, I.M. Obaidat, B.A. Albiss and Y. Haik, Int. J. Mol. Sci., 14, 21266 (2013); https://doi.org/10.3390/ijms141121266
References
A.D. Covington, Tanning Chemistry, Cambridge (2009).
E.F. George, M.A. Hall and G.J. Deklerk, Plant Propagation by Tissue Culture, Springer (2008).
R. Strebel, J. Vasku and H. Selye, J. Pharm. Pharmacol., 14, 658 (1962); https://doi.org/10.1111/j.2042-7158.1962.tb11156.x.
A.C. Clark, D.A. Dias, T.A. Smith, K.P. Ghiggino and G.R. Scollary, J. Agric. Food Chem., 59, 3575 (2011); https://doi.org/10.1021/jf104897z.
P. Grant-Preece, C. Barril, L.M. Schmidtke and A.C. Clark, J. Agric. Food Chem., 65, 2383 (2017); https://doi.org/10.1021/acs.jafc.6b04669.
S. Joseph, H.S. Joshi and M.J. Joshi, Cryst. Res. Technol., 32, 339 (1997); https://doi.org/10.1002/crat.2170320218.
S. Joseph, H.H. Joshi and M.J. Joshi, Indian J. Pure Appl. Phys., 39, 471 (2001).
S.J. Joshi, B.B. Parekh, K.D. Vohra and M.J. Joshi, Bull. Mater. Sci., 29, 307 (2006); https://doi.org/10.1007/BF02706501.
S.J. Joshi, K.P. Tank, B.B. Parekh and M.J. Joshi, Cryst. Res. Technol., 45, 303 (2010); https://doi.org/10.1002/crat.200900152.
U.V. Tarpara, P.M. Vyas and M.J. Joshi, Int. J. Nanosci., 14, 1550013 (2015); https://doi.org/10.1142/S0219581X15500131.
P.D. Solanki, S.R. Vasant and M.J. Joshi, Int. J. Appl. Ceram. Technol., 11, 663 (2014); https://doi.org/10.1111/ijac.12227.
L. Kumar, P. Kumar, A. Narayan and M. Kar, Int. Nano Lett., 3, 8 (2013); https://doi.org/10.1186/2228-5326-3-8.
V. Mathivanan and M. Haris, PRAMANA-J. Phys., 81, 177 (2013); https://doi.org/10.1007/s12043-013-0564-x.
K.P. Tank, Ph.D. Thesis, Department of Physics, Saurashtra University, Rajkot, India (2013).
S.R. Vasant, Ph.D. Thesis, Department of Physics, Saurashtra University, Rajkot, India (2015).
F.M. Reicha, M. El-Hiti, A.Z. El-Sonbati and M.A. Diab, J. Phys. D Appl. Phys., 24, 369 (1991); https://doi.org/10.1088/0022-3727/24/3/020.
K. Somashekhara Udupa, P. Mohan Rao, S. Aithal, A.P. Bhat and D.K. Avasthi, Bull. Mater. Sci., 20, 1069 (1997); https://doi.org/10.1007/BF02745057.
M. Shakir, B.K. Singh, R.K. Gaur, B. Kumar, G. Bhagavannarayana and M.A. Wahab, Chalcog. Lett., 6, 655 (2009).
M. Ravi, S. Song, K. Gu, J. Tang and Z. Zhang, Mater. Sci. Eng. B, 195, 74 (2015); https://doi.org/10.1016/j.mseb.2015.02.003.
M.N. Kamalasanan, N.D. Kumar and S. Chandra, J. Appl. Phys., 74, 5679 (1993); https://doi.org/10.1063/1.354183.
K. Funke, Prog. Solid State Chem., 22, 111 (1993); https://doi.org/10.1016/0079-6786(93)90002-9.
A.K. Roy, K. Prasad and A. Prasad, ISRN Ceram., Article ID 369670 (2013); https://doi.org/10.1155/2013/369670.
J.O. Lopez and R.G. Aguilar, Rev. Mex. Fis., 49, 529 (2003).
S.R. Elliott, Adv. Phys., 36, 135 (1987); https://doi.org/10.1080/00018738700101971.
S. Upadhyay, A.K. Sahu, D. Kumar and O. Parkash, J. Appl. Phys., 84, 828 (1998); https://doi.org/10.1063/1.368143.
S.R. Elliott, Philos. Mag., 36, 1291 (1977); https://doi.org/10.1080/14786437708238517.
G.E. Pike, Phys. Rev. B, 6, 1572 (1972); https://doi.org/10.1103/PhysRevB.6.1572.
H. Mahamoud, B. Louati, F. Hlel and K. Guidara, Bull. Mater. Sci., 34, 1069 (2011); https://doi.org/10.1007/s12034-011-0163-8.
C. Kittel, Introduction to Solid State Physics, Wiley Eastern: New Delhi, edn 7 (2007).
S. Joseph, H.H. Joshi, M.J. Joshi, N.V. Patel and M. Sarcar, Indian J. Phys., 71A, 643 (1997).
I. Bashar, I.M. Obaidat, B.A. Albiss and Y. Haik, Int. J. Mol. Sci., 14, 21266 (2013); https://doi.org/10.3390/ijms141121266