Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Growth and Characterization of Bisthiourea Lithium Sodium Sulphate: A Novel Semiorganic Nonlinear Optical Single Crystals
Corresponding Author(s) : G. Pasupathi
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
The semi organic nonlinear optical (NLO) material bisthiourea lithium sodium sulphate (BTLSS) was grown by slow evaporation growth technique. The grown crystal is subjected to single crystal XRD and powder X-ray diffraction with MoKa and CuKa radiation respectively for the determination of unit cell parameters and crystalline nature. The presence of functional groups in BTLSS was identified by FT-IR spectral evaluation. The optical properties of BTLSS have been determined by UV-Vis-NIR spectral analysis and the lower cut off wavelength is 300 nm. The fluorescence study was confirmed that the green emission of BTLSS, which suggests that the grown crystal is properly acceptable for NLO applications. The thermal behaviors of the grown crystals have been investigated by means of TG/DTA analyzer. The mechanical behaviors of the grown crystal were analyzed by Vickers micro hardness tester. Second harmonic generation (SHG) efficiency of the BTLSS was measured by Kurtz and Perry technique. The magnetic property of BTLSS was studied by vibrating sample Magnetometer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, John Wiley & Sons: New York (1991).
- H.S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press: New York (1997).
- J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press: New York (1997).
- G. Pasupathi, P. Philominathan, J. Miner. Mater. Charact. Engg., 11, 904 (2012).
- M.L. Caroline and S. Vasudevan, Curr. Appl. Phys., 9, 1054 (2009); https://doi.org/10.1016/j.cap.2008.12.001.
- V. Krishnakumar, C. Ramachandraraja and R.S. Sundararajan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 68, 113 (2007); https://doi.org/10.1016/j.saa.2006.09.045.
- V. Ganesh, M. Shkir, R. Husain, R. Singh, T.B. Rao and K.K. Rao, Optik, 124, 6690 (2013);https://doi.org/10.1016/j.ijleo.2013.05.087.
- S. Sagadevan, Optik, 125, 6746 (2014); https://doi.org/10.1016/j.ijleo.2014.08.059.
- M. Selvapandiyan, J. Arumugam, P. Sundaramoorthi and S. Sudhakar, J. Alloys Compd., 580, 270 (2013); https://doi.org/10.1016/j.jallcom.2013.05.071.
- S. Selvakumar, S.M.R. Kumar, G.P. Joseph, K. Rajarajan, J. Madhavan, S.A. Rajasekar and P. Sagayaraj, Mater. Chem. Phys., 103, 153 (2007); https://doi.org/10.1016/j.matchemphys.2007.02.005.
- R. Hanumantharao and S. Kalainathan, J. Phys. Chem. Solids, 73, 724 (2012); https://doi.org/10.1016/j.jpcs.2012.01.011.
- G. Ramasamy and S. Meenakshisundaram, J. Cryst. Growth, 377, 197 (2013); https://doi.org/10.1016/j.jcrysgro.2013.05.021.
- N. Bhuvaneswari, K. Baskar and R. Dhanasekaran, Optik, 126, 3731 (2015); https://doi.org/10.1016/j.ijleo.2015.08.246.
- K. Uma, R. Manimekalai and G. Pasupathi, Int. J. Chem. Mater. Res., 3, 91 (2015); https://doi.org/10.18488/journal.64/2015.3.4/64.4.91.99.
- K. Murugadoss, K. Gayathiridevi and G. Pasupathi, J. Opt., 45, 136 (2016); https://doi.org/10.1007/s12596-015-0301-6.
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York (1986).
- G. Pasupathi and P. Philominathan, Mater. Lett., 62, 4386 (2008); https://doi.org/10.1016/j.matlet.2008.07.023.
- S. Selvakumar, S.M.R. Kumar, K. Rajarajan, A.J.A. Pragasam, S.A. Rajasekar, K. Thamizharasan and P. Sagayaraj, Cryst. Growth Des., 6, 2607 (2006); https://doi.org/10.1021/cg060414p.
- R. Priya, S. Krishnan, C.J. Raj and S.J. Das, Cryst. Res. Technol., 44, 1272 (2009); https://doi.org/10.1002/crat.200900504.
- A. Periyasamy, S. Murugan and M. Palaniswamy, Rasayan J. Chem., 4, 981 (2009).
- S. Suresh, Optik, 125, 1223 (2014); https://doi.org/10.1016/j.ijleo.2013.07.154.
- R.H. Rao and S. Kalainathan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 97, 456 (2012); https://doi.org/10.1016/j.saa.2012.06.033.
- K.T Rathod, I.B. Patel, C.F. Desai, Y.H. Gandhi, Int. J. Lumin. Appl., 5, 86 (2015).
- S. Ariponnammal, S. Chandrasekaran and C. Sanjeeviraja, Dig. J. Nanomater. Biostruct., 7, 947 (2012).
- S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.
- K. Kiguchi, M. Kato, M. Okunaka and Y. Taniguchi, Appl. Phys. Lett., 60, 1933 (1992); https://doi.org/10.1063/1.107155.
- J. Ramajothi, S. Dhanuskodi and K. Nagarajan, Cryst. Res. Technol., 39, 414 (2004); https://doi.org/10.1002/crat.200310204.
- B.W. Mott, Micro-Indentation Hardness Testing, Buterworths: London (1956).
- E.M. Onitch, Mikroscopie, 2, 131 (1947).
- M. Hanneman, Metallurgia Manchu., 23, 135 (1941).
- K.K. Rao and D.B. Sirdeshmukh, Bull. Mater. Sci., 5, 449 (1983); https://doi.org/10.1007/BF02743923.
- S. Karthick, A.A. Irudayaraj, A.D. Raj and R. Vinayagamoorthy, Int. J. Technol. Res. Appl., 37, 86 (2016).
- P. Maadeswaran, S. Thirumalairajan and J. Chandrasekaran, Optoelectron. Adv. Mater., 3, 36 (2009).
- G. Pasupathi, K. Uma, C. Ramachandra Raja and R. Manimekalai, Mater. Lett., 161, 224 (2015); https://doi.org/10.1016/j.matlet.2015.07.111.
References
P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, John Wiley & Sons: New York (1991).
H.S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press: New York (1997).
J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press: New York (1997).
G. Pasupathi, P. Philominathan, J. Miner. Mater. Charact. Engg., 11, 904 (2012).
M.L. Caroline and S. Vasudevan, Curr. Appl. Phys., 9, 1054 (2009); https://doi.org/10.1016/j.cap.2008.12.001.
V. Krishnakumar, C. Ramachandraraja and R.S. Sundararajan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 68, 113 (2007); https://doi.org/10.1016/j.saa.2006.09.045.
V. Ganesh, M. Shkir, R. Husain, R. Singh, T.B. Rao and K.K. Rao, Optik, 124, 6690 (2013);https://doi.org/10.1016/j.ijleo.2013.05.087.
S. Sagadevan, Optik, 125, 6746 (2014); https://doi.org/10.1016/j.ijleo.2014.08.059.
M. Selvapandiyan, J. Arumugam, P. Sundaramoorthi and S. Sudhakar, J. Alloys Compd., 580, 270 (2013); https://doi.org/10.1016/j.jallcom.2013.05.071.
S. Selvakumar, S.M.R. Kumar, G.P. Joseph, K. Rajarajan, J. Madhavan, S.A. Rajasekar and P. Sagayaraj, Mater. Chem. Phys., 103, 153 (2007); https://doi.org/10.1016/j.matchemphys.2007.02.005.
R. Hanumantharao and S. Kalainathan, J. Phys. Chem. Solids, 73, 724 (2012); https://doi.org/10.1016/j.jpcs.2012.01.011.
G. Ramasamy and S. Meenakshisundaram, J. Cryst. Growth, 377, 197 (2013); https://doi.org/10.1016/j.jcrysgro.2013.05.021.
N. Bhuvaneswari, K. Baskar and R. Dhanasekaran, Optik, 126, 3731 (2015); https://doi.org/10.1016/j.ijleo.2015.08.246.
K. Uma, R. Manimekalai and G. Pasupathi, Int. J. Chem. Mater. Res., 3, 91 (2015); https://doi.org/10.18488/journal.64/2015.3.4/64.4.91.99.
K. Murugadoss, K. Gayathiridevi and G. Pasupathi, J. Opt., 45, 136 (2016); https://doi.org/10.1007/s12596-015-0301-6.
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York (1986).
G. Pasupathi and P. Philominathan, Mater. Lett., 62, 4386 (2008); https://doi.org/10.1016/j.matlet.2008.07.023.
S. Selvakumar, S.M.R. Kumar, K. Rajarajan, A.J.A. Pragasam, S.A. Rajasekar, K. Thamizharasan and P. Sagayaraj, Cryst. Growth Des., 6, 2607 (2006); https://doi.org/10.1021/cg060414p.
R. Priya, S. Krishnan, C.J. Raj and S.J. Das, Cryst. Res. Technol., 44, 1272 (2009); https://doi.org/10.1002/crat.200900504.
A. Periyasamy, S. Murugan and M. Palaniswamy, Rasayan J. Chem., 4, 981 (2009).
S. Suresh, Optik, 125, 1223 (2014); https://doi.org/10.1016/j.ijleo.2013.07.154.
R.H. Rao and S. Kalainathan, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 97, 456 (2012); https://doi.org/10.1016/j.saa.2012.06.033.
K.T Rathod, I.B. Patel, C.F. Desai, Y.H. Gandhi, Int. J. Lumin. Appl., 5, 86 (2015).
S. Ariponnammal, S. Chandrasekaran and C. Sanjeeviraja, Dig. J. Nanomater. Biostruct., 7, 947 (2012).
S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); https://doi.org/10.1063/1.1656857.
K. Kiguchi, M. Kato, M. Okunaka and Y. Taniguchi, Appl. Phys. Lett., 60, 1933 (1992); https://doi.org/10.1063/1.107155.
J. Ramajothi, S. Dhanuskodi and K. Nagarajan, Cryst. Res. Technol., 39, 414 (2004); https://doi.org/10.1002/crat.200310204.
B.W. Mott, Micro-Indentation Hardness Testing, Buterworths: London (1956).
E.M. Onitch, Mikroscopie, 2, 131 (1947).
M. Hanneman, Metallurgia Manchu., 23, 135 (1941).
K.K. Rao and D.B. Sirdeshmukh, Bull. Mater. Sci., 5, 449 (1983); https://doi.org/10.1007/BF02743923.
S. Karthick, A.A. Irudayaraj, A.D. Raj and R. Vinayagamoorthy, Int. J. Technol. Res. Appl., 37, 86 (2016).
P. Maadeswaran, S. Thirumalairajan and J. Chandrasekaran, Optoelectron. Adv. Mater., 3, 36 (2009).
G. Pasupathi, K. Uma, C. Ramachandra Raja and R. Manimekalai, Mater. Lett., 161, 224 (2015); https://doi.org/10.1016/j.matlet.2015.07.111.