Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Nanoscale Phenomena During Crystal Growth of CaxCd1-xCO3 Solid Solution at Calcite Surface Exposed to Cadmium Bearing Aqueous Solution
Corresponding Author(s) : Wenlei Wang
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
The crystal growth of CaxCd1-xCO3 solid solution play an important role in understanding the transformation relationship of the calcite surface exposed to cadmium-bearing aqueous solution. in situ AFM measurements were used to perform the real-time tracking of surface precipitates that are generated on the surface of calcite single crystals reacted with Cd2+ solution. As evidenced by changes in the height, shape and growth behaviour, two-dimensional epitaxial island was detected to form and grow on the surfaces. These detections of the generated crystals by SEM, EDS and TEM have demonstrated the formation of an epitaxial CaxCd1-xCO3 solid solution. The epitaxial solid solution within nanometers was first rich in caelement and the content of cadmium increased with the distance from the original calcite surface, culminating almost pure CdCO3 in the topmost region. A low-cadmium solid solution with thermodynamic instability could be transformed into a cadmium-rich solid solution and form continuous solid solution in the process of maturation. This study aims to provide a better understanding of nanoscale features of the surface precipitation process at calcite surface in the presence of cadmium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-Y. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang and S.-M. Yang, J. Solid State Chem., 261, 53 (2018); https://doi.org/10.1016/j.jssc.2018.02.010.
- H.M. Hu, X.W. Li, P.W. Huang, Q.W. Zhang and W.Y. Yuan, J. Environ. Manage., 203, 1 (2017); https://doi.org/10.1016/j.jenvman.2017.07.066.
- Z.H. Dong, F. Zhang, D. Wang, X. Liu and J. Jin, J. Solid State Chem., 224, 88 (2015); https://doi.org/10.1016/j.jssc.2014.06.030.
- L. Klapiszewski, K. Siwinska-Stefanska and D. Kolodynska, Chem. Eng. J., 330, 518 (2017); https://doi.org/10.1016/j.cej.2017.07.177.
- E.B.R. Callagon, S.S. Lee, P.J. Eng, N. Laanait, N.C. Sturchio, K.L. Nagy and P. Fenter, Geochim. Cosmochim. Acta, 205, 360 (2017); https://doi.org/10.1016/j.gca.2016.12.007.
- M. Bucca, M. Dietzel, J.W. Tang, A. Leis and S.J. Köhler, Chem. Geol., 266, 143 (2009); https://doi.org/10.1016/j.chemgeo.2009.06.002.
- C. Pérez-Garrido, L. Fernández-Díaz, C.M. Pina and M. Prieto, Surf. Sci., 601, 5499 (2007); https://doi.org/10.1016/j.susc.2007.09.021.
- M. Prieto, A. Fernández-González, A. Putnis and L. Fernández-Díaz, Geochim. Cosmochim. Acta, 61, 3383 (1997); https://doi.org/10.1016/S0016-7037(97)00160-9.
- P.A. Rock, W.H. Casey, M.K. Mcbeath and E.M. Walling, Geochim. Cosmochim. Acta, 58, 4281 (1994); https://doi.org/10.1016/0016-7037(94)90333-6.
- Y. Du, F. Lian and L.Y. Zhu, Environ. Pollut., 159, 1763 (2011); https://doi.org/10.1016/j.envpol.2011.04.017.
- S.L. Riechers, K.M. Rosso and S.N. Kerisit, J. Phys. Chem. C, 121, 5012 (2017); https://doi.org/10.1021/acs.jpcc.6b11727.
- P. Cubillas, S. Köhler, M. Prieto, C. Causserand and E.H. Oelkers, Geochim. Cosmochim. Acta, 69, 5459 (2005); https://doi.org/10.1016/j.gca.2005.07.016.
- J.M. Astilleros, C.M. Pina, L. Fernández-Díaz, M. Prieto and A. Putnis, Chem. Geol., 225, 322 (2006); https://doi.org/10.1016/j.chemgeo.2005.08.025.
- M. Xu, L. Kovarik, B.W. Arey, A.R. Felmy, K.M. Rosso and S. Kerisit, Geochim. Cosmochim. Acta, 134, 221 (2014); https://doi.org/10.1016/j.gca.2013.11.036.
- M. Xu, E.S. Ilton, M.H. Engelhard, O. Qafoku, A.R. Felmy, K.M. Rosso and S. Kerisit, Chem. Geol., 397, 24 (2015); https://doi.org/10.1016/j.chemgeo.2015.01.003.
- D. Konopacka-£yskawa, B. Koœcielska and J. Karczewski, J. Cryst. Growth, 478, 102 (2017); https://doi.org/10.1016/j.jcrysgro.2017.08.033.
- N. Wada, N. Horiuchi, M. Nakamura, K. Nozaki, T. Hiyama, A. Nagai and K. Yamashita, J. Cryst. Growth, 415, 7 (2015); https://doi.org/10.1016/j.jcrysgro.2014.12.027.
- P. Cubillas and S.R. Higgins, Geochem. Trans., 10, 7 (2009); https://doi.org/10.1186/1467-4866-10-7.
- M.M. Reddy, J. Cryst. Growth, 352, 151 (2012); https://doi.org/10.1016/j.jcrysgro.2011.12.069.
- S.L.S. Stipp, G.A. Parks, D.K. Nordstrom and J.O. Leckie, Geochim. Cosmochim. Acta, 57, 2699 (1993); https://doi.org/10.1016/0016-7037(93)90384-9.
- B.R. Churagulov, P. Schmidt and D. Zeng, J. Phys. Chem. Ref. Data, 40, 043104 (2011); https://doi.org/10.1063/1.3645087.
- E. Königsberger, R. Hausner and H. Gamsjäger, Geochim. Cosmochim. Acta, 55, 3505 (1991); https://doi.org/10.1016/0016-7037(91)90051-6.
- H. Nada, T. Nishimura, T. Sakamoto and T. Kato, J. Cryst. Growth, 450, 148 (2016); https://doi.org/10.1016/j.jcrysgro.2016.06.042.
- P. Raiteri and J.D. Gale, J. Am. Chem. Soc., 132, 17623 (2010); https://doi.org/10.1021/ja108508k.
- D. Gebauer, A. Volkel and H. Colfen, Science, 322, 1819 (2008); https://doi.org/10.1126/science.1164271.
- E.M. Pouget, P.H.H. Bomans, J.A.C.M. Goos, P.M. Frederik, G. de With and N.A.J.M. Sommerdijk, Science, 323, 1455 (2009); https://doi.org/10.1126/science.1169434.
- G.K. Mandell, P.A. Rock, W.H. Fink and W.H. Casey, J. Phys. Chem. Solids, 60, 651 (1999); https://doi.org/10.1016/S0022-3697(98)00320-5.
- Z.T.Y. Liu, B.P. Burton, S.V. Khare and P. Sarin, Chem. Geol., 443, 137 (2016); https://doi.org/10.1016/j.chemgeo.2016.09.024.
References
Y.-Y. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang and S.-M. Yang, J. Solid State Chem., 261, 53 (2018); https://doi.org/10.1016/j.jssc.2018.02.010.
H.M. Hu, X.W. Li, P.W. Huang, Q.W. Zhang and W.Y. Yuan, J. Environ. Manage., 203, 1 (2017); https://doi.org/10.1016/j.jenvman.2017.07.066.
Z.H. Dong, F. Zhang, D. Wang, X. Liu and J. Jin, J. Solid State Chem., 224, 88 (2015); https://doi.org/10.1016/j.jssc.2014.06.030.
L. Klapiszewski, K. Siwinska-Stefanska and D. Kolodynska, Chem. Eng. J., 330, 518 (2017); https://doi.org/10.1016/j.cej.2017.07.177.
E.B.R. Callagon, S.S. Lee, P.J. Eng, N. Laanait, N.C. Sturchio, K.L. Nagy and P. Fenter, Geochim. Cosmochim. Acta, 205, 360 (2017); https://doi.org/10.1016/j.gca.2016.12.007.
M. Bucca, M. Dietzel, J.W. Tang, A. Leis and S.J. Köhler, Chem. Geol., 266, 143 (2009); https://doi.org/10.1016/j.chemgeo.2009.06.002.
C. Pérez-Garrido, L. Fernández-Díaz, C.M. Pina and M. Prieto, Surf. Sci., 601, 5499 (2007); https://doi.org/10.1016/j.susc.2007.09.021.
M. Prieto, A. Fernández-González, A. Putnis and L. Fernández-Díaz, Geochim. Cosmochim. Acta, 61, 3383 (1997); https://doi.org/10.1016/S0016-7037(97)00160-9.
P.A. Rock, W.H. Casey, M.K. Mcbeath and E.M. Walling, Geochim. Cosmochim. Acta, 58, 4281 (1994); https://doi.org/10.1016/0016-7037(94)90333-6.
Y. Du, F. Lian and L.Y. Zhu, Environ. Pollut., 159, 1763 (2011); https://doi.org/10.1016/j.envpol.2011.04.017.
S.L. Riechers, K.M. Rosso and S.N. Kerisit, J. Phys. Chem. C, 121, 5012 (2017); https://doi.org/10.1021/acs.jpcc.6b11727.
P. Cubillas, S. Köhler, M. Prieto, C. Causserand and E.H. Oelkers, Geochim. Cosmochim. Acta, 69, 5459 (2005); https://doi.org/10.1016/j.gca.2005.07.016.
J.M. Astilleros, C.M. Pina, L. Fernández-Díaz, M. Prieto and A. Putnis, Chem. Geol., 225, 322 (2006); https://doi.org/10.1016/j.chemgeo.2005.08.025.
M. Xu, L. Kovarik, B.W. Arey, A.R. Felmy, K.M. Rosso and S. Kerisit, Geochim. Cosmochim. Acta, 134, 221 (2014); https://doi.org/10.1016/j.gca.2013.11.036.
M. Xu, E.S. Ilton, M.H. Engelhard, O. Qafoku, A.R. Felmy, K.M. Rosso and S. Kerisit, Chem. Geol., 397, 24 (2015); https://doi.org/10.1016/j.chemgeo.2015.01.003.
D. Konopacka-£yskawa, B. Koœcielska and J. Karczewski, J. Cryst. Growth, 478, 102 (2017); https://doi.org/10.1016/j.jcrysgro.2017.08.033.
N. Wada, N. Horiuchi, M. Nakamura, K. Nozaki, T. Hiyama, A. Nagai and K. Yamashita, J. Cryst. Growth, 415, 7 (2015); https://doi.org/10.1016/j.jcrysgro.2014.12.027.
P. Cubillas and S.R. Higgins, Geochem. Trans., 10, 7 (2009); https://doi.org/10.1186/1467-4866-10-7.
M.M. Reddy, J. Cryst. Growth, 352, 151 (2012); https://doi.org/10.1016/j.jcrysgro.2011.12.069.
S.L.S. Stipp, G.A. Parks, D.K. Nordstrom and J.O. Leckie, Geochim. Cosmochim. Acta, 57, 2699 (1993); https://doi.org/10.1016/0016-7037(93)90384-9.
B.R. Churagulov, P. Schmidt and D. Zeng, J. Phys. Chem. Ref. Data, 40, 043104 (2011); https://doi.org/10.1063/1.3645087.
E. Königsberger, R. Hausner and H. Gamsjäger, Geochim. Cosmochim. Acta, 55, 3505 (1991); https://doi.org/10.1016/0016-7037(91)90051-6.
H. Nada, T. Nishimura, T. Sakamoto and T. Kato, J. Cryst. Growth, 450, 148 (2016); https://doi.org/10.1016/j.jcrysgro.2016.06.042.
P. Raiteri and J.D. Gale, J. Am. Chem. Soc., 132, 17623 (2010); https://doi.org/10.1021/ja108508k.
D. Gebauer, A. Volkel and H. Colfen, Science, 322, 1819 (2008); https://doi.org/10.1126/science.1164271.
E.M. Pouget, P.H.H. Bomans, J.A.C.M. Goos, P.M. Frederik, G. de With and N.A.J.M. Sommerdijk, Science, 323, 1455 (2009); https://doi.org/10.1126/science.1169434.
G.K. Mandell, P.A. Rock, W.H. Fink and W.H. Casey, J. Phys. Chem. Solids, 60, 651 (1999); https://doi.org/10.1016/S0022-3697(98)00320-5.
Z.T.Y. Liu, B.P. Burton, S.V. Khare and P. Sarin, Chem. Geol., 443, 137 (2016); https://doi.org/10.1016/j.chemgeo.2016.09.024.