Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ru(III) Catalyzed Oxidation of Ciprofloxacin by Iron(III): A Kinetic and Mechanistic Approach
Corresponding Author(s) : P.K. Asha
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
Oxidation of fluoroquinolone class antibiotic i.e., ciprofloxacin using hexacyanoferrate(III) in the presence of ruthenium catalyst has been investigated spectrophotometrically in an aqueous alkaline medium at room temperature. The main reaction product was identified by LC-MS was 4-cyclopropyl-7-fluoro-2-hydroxy-6-(piperazin-1-yl)naphthalen-1(4H)-one. Stoichiometric ratio obtained was 1:2, that is for each mole of ciprofloxacin two moles of hexacyanoferrate(III) are required for their complete oxidation. The reaction exhibited unit order with respect to hexacyanoferrate(III) and Ru (catalyst) and it was found to be less than unit order for [OH−] and ciprofloxacin. Considering the possible reactive species of reactant and a most probable kinetic mechanism have been envisaged. Mechanism was proposed for the reaction using the activation parameters and thermodynamic quantities calculated with respect to the slow step mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. De Witte, H. Van Langenhove, K. Demeestere and J. Dewulf, Crit. Rev. Environ. Sci. Technol., 41, 215 (2011); https://doi.org/10.1080/10643380902728698.
- R. Andreozzi, L. Campanella, B. Fraysse, J. Garric, A. Gonnella, R. Lo Giudice, R. Marotta, G. Pinto and A. Pollio, Water Sci. Technol., 50, 23 (2004); https://doi.org/10.2166/wst.2004.0304.
- K. Oberlé, M.-J. Capdeville, T. Berthe, H. Budzinski and F. Petit, Environ. Sci. Technol., 46, 1859 (2012); https://doi.org/10.1021/es203399h.
- H. Zhang and C.-H. Huang, Environ. Sci. Technol., 39, 4474 (2005); https://doi.org/10.1021/es048166d.
- R.M. Kulkarni, M.S. Hanagadakar, R.S. Malladi, M.S. Gudaganatti, H.S. Biswal and S.T. Nandibewoor, Indian J. Chem. Technol., 21, 38 (2014).
- M.S. Gudaganatti, M.S. Hanagadakar, R.M. Kulkarni, R.S. Malladi and R.K. Nagarale, Prog React Kinet, 37, 366 (2012); https://doi.org/10.3184/146867812X13440034591571.
- R.M. Kulkarni, M.S. Hanagadakar, R.S. Malladi, H.S. Biswal and E.M. Cuerda-Correa, Desalination Water Treat., 57, 10826 (2016); https://doi.org/10.1080/19443994.2015.1037797.
- A.M. Balado, B.C. Galon and F.J.P. Marton, Anal. Quim., 88, 170 (1992).
- H.S. Singh, R.K. Singh, S.M. Singh and A.K. Sisodia, J. Phys. Chem., 81, 1044 (1977); https://doi.org/10.1021/j100526a004.
- G.A. Hiremath, P.L. Timmanagoudar and S.T. Nandibewoor, React. Kinet. Catal. Lett., 63, 403 (1998); https://doi.org/10.1007/BF02475419.
- S.T. Nandibewoor, G.A. Hiremath and P.L. Timmanagoudar, Transition Met. Chem., 25, 394 (2000); https://doi.org/10.1023/A:1007084709817.
- S.D. Nyholm and A.F. Trotman-Dickenson, eds.: J.C. Bailar and H.J. Emeleus, Comprehensive Inorganic Chemistry, Pergamon Press: Oxford, vol. 3, p. 810 (1975).
- A.G. Sykes, eds.: H. Gemeleus and A.G. Sharpe, Advances in Inorganic and Radiochemistry, Academic Press: New York, vol. 10, p. 153 (1967).
- G. Tazwar, A. Jain, N. Mittal and V. Devra, Int. J. Chem. Kinet., 49, 534 (2017); https://doi.org/10.1002/kin.21097.
- E.P. Kelson and P.P. Phengsy, Int. J. Chem. Kinet., 32, 760 (2000); https://doi.org/10.1002/1097-4601(2000)32:12<760::AID-KIN3>3.0.CO;2-7.
- A.I. Vovk and I. Muraveva, Russ. J. Gen. Chem., 70, 1108 (2000).
- G. Dasgupta and K. Mahanti, Bull. Soc. Chim. Fr., 4, 492 (1986).
- V. Shastry, P.K. Asha and B.C. Sateesh, Asian J. Chem., 29, 2353 (2017); https://doi.org/10.14233/ajchem.2017.20566.
- A. Nowdari, K.K. Adari, N.R. Gollapalli and V. Parvataneni, Eur. J. Chem., 6, 93 (2009).
- M. Martinez, M.A. Pitarque and R.V. Eldik, J. Chem. Soc., Dalton Trans., 2665 (1996); https://doi.org/10.1039/DT9960002665.
- M.B. Patgar, S.T. Nandibewoor and S.A. Chimatadar, Cogent Chem, 1, 1 (2015); https://doi.org/10.1080/23312009.2015.1088778.
- P. Wang, Y.L. He and C.H. Huang, Water Res., 44, 5989 (2010); https://doi.org/10.1016/j.watres.2010.07.053.
- E. Guinea, E. Brillas, F. Centellas, P. Cañizares, M.A. Rodrigo and C. Sáez, Water Res., 43, 2131 (2009); https://doi.org/10.1016/j.watres.2009.02.025.
- M.C. Dodd, A.D. Shah, U. Vongunten and C.H. Huang, Environ. Sci. Technol., 39, 7065 (2005); https://doi.org/10.1021/es050054e.
- A. Jain, S. Jain and V. Devra, Int. J. Pharm. Sci. Drug Res., 7, 205 (2015).
- A. Gupta and A. Garg, Chemosphere, 193, 1181 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.046.
- B. Yang, R.S. Kookana, M. Williams, G.-G. Ying, J. Du, H. Doan and A. Kumar, J. Hazard. Mater., 320, 296 (2016); https://doi.org/10.1016/j.jhazmat.2016.08.040.
- G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny, Vogel’s Text Book of Quantitative Chemical Analysis, ELBS, Longman: Essex, UK, edn 5 (1996).
- D.L. Kamble, R.B. Chougale and S.T. Nandibewoor, Indian J. Chem., 35A, 865 (1996).
- A. Nowduri, A.B. Duggada, V.R. Kurimella and J. Int. Sci. Res., 3, 131 (2014).
- A.A.P. Khan, A. Khan, A.M. Asiri, N. Azum and M.A. Rub, J. Taiwan Inst. Chem. Eng., 45, 127 (2014); https://doi.org/10.1016/j.jtice.2013.04.014.
- A.M. Asiri, A.A.P. Khan and A.J. Khan, Mol. Liq., 203, 1 (2015); https://doi.org/10.1016/j.molliq.2014.12.017.
- G. Lente, I. Fabian and A.J. Poe, New J. Chem., 29, 759 (2005); https://doi.org/10.1039/b501687h.
- K.S. Byadagi, D.V. Naik, A.P. Savanur, S.T. Nandibewoor and S.A. Chimatadar, React. Kinet. Mech. Catal., 99, 53 (2010); https://doi.org/10.1007/s11144-009-0113-2.
- P.K. Asha, S. Vidyavathi, Shastry, S. Shashidhar and L. Parashuram, Mater. Today: Proceedings, 5, 2854 (2018); https://doi.org/10.1016/j.matpr.2018.01.076.
- H.H. Cady and R.E. Connick, J. Am. Chem. Soc., 80, 2646 (1958); https://doi.org/10.1021/ja01544a012.
- D.L. Kamble and S.T. Nandibewoor, J. Phys. Org. Chem., 11, 171 (1998); https://doi.org/10.1002/(SICI)1099-1395(199803)11:3<171::AID-POC988>3.0.CO;2-4.
- V. Uma, B. Sethuram and T. Navaneeth Rao, React. Kinet. Catal. Lett., 18, 283 (1981); https://doi.org/10.1007/BF02065608.
- A.A.P. Khan, A.M. Asiri, N. Azum, M.A. Rub, A. Khan and A.O. AlYoubi, Ind. Eng. Chem. Res., 51, 4819 (2012); https://doi.org/10.1021/ie202483c.
- A.A.P. Khan, A. Khan, A.M. Asiri and M.A. Rub, J. Ind. Eng. Chem., 20, 3590 (2014); https://doi.org/10.1016/j.jiec.2013.12.053.
- A.A.P. Khan, A. Khan, A.M. Asiri and S.A. Khan, J. Mol. Liq., 218, 604 (2016); https://doi.org/10.1016/j.molliq.2016.02.051.
References
B. De Witte, H. Van Langenhove, K. Demeestere and J. Dewulf, Crit. Rev. Environ. Sci. Technol., 41, 215 (2011); https://doi.org/10.1080/10643380902728698.
R. Andreozzi, L. Campanella, B. Fraysse, J. Garric, A. Gonnella, R. Lo Giudice, R. Marotta, G. Pinto and A. Pollio, Water Sci. Technol., 50, 23 (2004); https://doi.org/10.2166/wst.2004.0304.
K. Oberlé, M.-J. Capdeville, T. Berthe, H. Budzinski and F. Petit, Environ. Sci. Technol., 46, 1859 (2012); https://doi.org/10.1021/es203399h.
H. Zhang and C.-H. Huang, Environ. Sci. Technol., 39, 4474 (2005); https://doi.org/10.1021/es048166d.
R.M. Kulkarni, M.S. Hanagadakar, R.S. Malladi, M.S. Gudaganatti, H.S. Biswal and S.T. Nandibewoor, Indian J. Chem. Technol., 21, 38 (2014).
M.S. Gudaganatti, M.S. Hanagadakar, R.M. Kulkarni, R.S. Malladi and R.K. Nagarale, Prog React Kinet, 37, 366 (2012); https://doi.org/10.3184/146867812X13440034591571.
R.M. Kulkarni, M.S. Hanagadakar, R.S. Malladi, H.S. Biswal and E.M. Cuerda-Correa, Desalination Water Treat., 57, 10826 (2016); https://doi.org/10.1080/19443994.2015.1037797.
A.M. Balado, B.C. Galon and F.J.P. Marton, Anal. Quim., 88, 170 (1992).
H.S. Singh, R.K. Singh, S.M. Singh and A.K. Sisodia, J. Phys. Chem., 81, 1044 (1977); https://doi.org/10.1021/j100526a004.
G.A. Hiremath, P.L. Timmanagoudar and S.T. Nandibewoor, React. Kinet. Catal. Lett., 63, 403 (1998); https://doi.org/10.1007/BF02475419.
S.T. Nandibewoor, G.A. Hiremath and P.L. Timmanagoudar, Transition Met. Chem., 25, 394 (2000); https://doi.org/10.1023/A:1007084709817.
S.D. Nyholm and A.F. Trotman-Dickenson, eds.: J.C. Bailar and H.J. Emeleus, Comprehensive Inorganic Chemistry, Pergamon Press: Oxford, vol. 3, p. 810 (1975).
A.G. Sykes, eds.: H. Gemeleus and A.G. Sharpe, Advances in Inorganic and Radiochemistry, Academic Press: New York, vol. 10, p. 153 (1967).
G. Tazwar, A. Jain, N. Mittal and V. Devra, Int. J. Chem. Kinet., 49, 534 (2017); https://doi.org/10.1002/kin.21097.
E.P. Kelson and P.P. Phengsy, Int. J. Chem. Kinet., 32, 760 (2000); https://doi.org/10.1002/1097-4601(2000)32:12<760::AID-KIN3>3.0.CO;2-7.
A.I. Vovk and I. Muraveva, Russ. J. Gen. Chem., 70, 1108 (2000).
G. Dasgupta and K. Mahanti, Bull. Soc. Chim. Fr., 4, 492 (1986).
V. Shastry, P.K. Asha and B.C. Sateesh, Asian J. Chem., 29, 2353 (2017); https://doi.org/10.14233/ajchem.2017.20566.
A. Nowdari, K.K. Adari, N.R. Gollapalli and V. Parvataneni, Eur. J. Chem., 6, 93 (2009).
M. Martinez, M.A. Pitarque and R.V. Eldik, J. Chem. Soc., Dalton Trans., 2665 (1996); https://doi.org/10.1039/DT9960002665.
M.B. Patgar, S.T. Nandibewoor and S.A. Chimatadar, Cogent Chem, 1, 1 (2015); https://doi.org/10.1080/23312009.2015.1088778.
P. Wang, Y.L. He and C.H. Huang, Water Res., 44, 5989 (2010); https://doi.org/10.1016/j.watres.2010.07.053.
E. Guinea, E. Brillas, F. Centellas, P. Cañizares, M.A. Rodrigo and C. Sáez, Water Res., 43, 2131 (2009); https://doi.org/10.1016/j.watres.2009.02.025.
M.C. Dodd, A.D. Shah, U. Vongunten and C.H. Huang, Environ. Sci. Technol., 39, 7065 (2005); https://doi.org/10.1021/es050054e.
A. Jain, S. Jain and V. Devra, Int. J. Pharm. Sci. Drug Res., 7, 205 (2015).
A. Gupta and A. Garg, Chemosphere, 193, 1181 (2018); https://doi.org/10.1016/j.chemosphere.2017.11.046.
B. Yang, R.S. Kookana, M. Williams, G.-G. Ying, J. Du, H. Doan and A. Kumar, J. Hazard. Mater., 320, 296 (2016); https://doi.org/10.1016/j.jhazmat.2016.08.040.
G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denny, Vogel’s Text Book of Quantitative Chemical Analysis, ELBS, Longman: Essex, UK, edn 5 (1996).
D.L. Kamble, R.B. Chougale and S.T. Nandibewoor, Indian J. Chem., 35A, 865 (1996).
A. Nowduri, A.B. Duggada, V.R. Kurimella and J. Int. Sci. Res., 3, 131 (2014).
A.A.P. Khan, A. Khan, A.M. Asiri, N. Azum and M.A. Rub, J. Taiwan Inst. Chem. Eng., 45, 127 (2014); https://doi.org/10.1016/j.jtice.2013.04.014.
A.M. Asiri, A.A.P. Khan and A.J. Khan, Mol. Liq., 203, 1 (2015); https://doi.org/10.1016/j.molliq.2014.12.017.
G. Lente, I. Fabian and A.J. Poe, New J. Chem., 29, 759 (2005); https://doi.org/10.1039/b501687h.
K.S. Byadagi, D.V. Naik, A.P. Savanur, S.T. Nandibewoor and S.A. Chimatadar, React. Kinet. Mech. Catal., 99, 53 (2010); https://doi.org/10.1007/s11144-009-0113-2.
P.K. Asha, S. Vidyavathi, Shastry, S. Shashidhar and L. Parashuram, Mater. Today: Proceedings, 5, 2854 (2018); https://doi.org/10.1016/j.matpr.2018.01.076.
H.H. Cady and R.E. Connick, J. Am. Chem. Soc., 80, 2646 (1958); https://doi.org/10.1021/ja01544a012.
D.L. Kamble and S.T. Nandibewoor, J. Phys. Org. Chem., 11, 171 (1998); https://doi.org/10.1002/(SICI)1099-1395(199803)11:3<171::AID-POC988>3.0.CO;2-4.
V. Uma, B. Sethuram and T. Navaneeth Rao, React. Kinet. Catal. Lett., 18, 283 (1981); https://doi.org/10.1007/BF02065608.
A.A.P. Khan, A.M. Asiri, N. Azum, M.A. Rub, A. Khan and A.O. AlYoubi, Ind. Eng. Chem. Res., 51, 4819 (2012); https://doi.org/10.1021/ie202483c.
A.A.P. Khan, A. Khan, A.M. Asiri and M.A. Rub, J. Ind. Eng. Chem., 20, 3590 (2014); https://doi.org/10.1016/j.jiec.2013.12.053.
A.A.P. Khan, A. Khan, A.M. Asiri and S.A. Khan, J. Mol. Liq., 218, 604 (2016); https://doi.org/10.1016/j.molliq.2016.02.051.