Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Influence of Temperature and Concentration of Capping Molecule and bis(N-Cyclohexyl-2-hydroxy-1-naphthaldehydato)manganese(II) as Single Source Precursor for Synthesis of TOPO Capped Mn3O4 Nanoparticles
Corresponding Author(s) : T. Xaba
Asian Journal of Chemistry,
Vol. 30 No. 12 (2018): Vol 30 Issue 12
Abstract
In this study, the effect of temperature, amount of the precursor and the concentration of the stabilizer on the synthesis of manganese oxide nanoparticles using bis(N-cyclohexyl-2-hydroxy-1-naphthaldehydato)manganese(II) complex has been investigated. The precursor was prepared from the chemical reaction of 2-hydroxy-1-naphthaldehyde, amine and manganese salt. The resulting precursor was thermally decomposed into tri-n-octylphosphine oxide (TOPO) to synthesize TOPO capped manganese oxide nanoparticles at the temperature ranging from 120 to 200 ºC. Various instruments were used to characterize the prepared complex and manganese nanoparticles. The optical band gaps energies of the nanoparticles were decreasing from 1.48 to 1.35 eV when the decomposition temperature was increased.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Arun, N. Sridevi, P.P. Robinson, S. Manju and K.K.M. Yusuff, J. Mol. Catal. Chem., 304, 191 (2009); https://doi.org/10.1016/j.molcata.2009.02.011.
- K.C. Gupta and A.K. Sutar, Coord. Chem. Rev., 252, 1420 (2008); https://doi.org/10.1016/j.ccr.2007.09.005.
- Y.-B. Dong, H.-Q. Zhang, J.-P. Ma, R.-Q. Huang and C.-Y. Su, Cryst. Growth Des., 5, 1857 (2005); https://doi.org/10.1021/cg0501534.
- A.K. Ghosh, D. Ghoshal, J. Ribas, G. Mostafa and N.R. Chaudhuri, Cryst. Growth Des., 6, 36 (2006); https://doi.org/10.1021/cg050423i.
- P. Phuengphai, S. Youngme, P. Kongsaeree, C. Pakawatchai, N. Chaichit, S.J. Teat, P. Gamez and J. Reedijk, CrystEngComm, 11, 1723 (2009); https://doi.org/10.1039/b901607d.
- P.A. Vigato and S. Tamburini, Coord. Chem. Rev., 248, 1717 (2004); https://doi.org/10.1016/j.cct.2003.09.003.
- D. Pucci, A. Bellusci, A. Crispini, M. Ghedini and M. La Deda, Inorg. Chim. Acta, 357, 495 (2004); https://doi.org/10.1016/j.ica.2003.08.015.
- C. Biswas, M.G.B. Drew, A. Figuerola, S. Gómez-Coca, E. Ruiz, V. Tangoulis and A. Ghosh, Inorg. Chim. Acta, 363, 846 (2010); https://doi.org/10.1016/j.ica.2009.12.048.
- K. Fan, C. Cao, Y. Pan, D. Lu, D. Yang, J. Feng, L. Song, M. Liang and X. Yan, Nat. Nanotechnol., 7, 459 (2012); https://doi.org/10.1038/nnano.2012.90.
- C.R. Olsen, T.J. Smith, J.S. Embley, J.H. Maxfield, K.R. Hansen, J.R. Peterson, A.M. Henrichsen, S.D. Erickson, D.C. Buck, J.S. Colton and R.K. Watt, Nanotechnology, 28, 195601 (2017); https://doi.org/10.1088/1361-6528/aa68ae.
- H.-Y. Su, Y. Gorlin, I.C. Man, F. Calle-Vallejo, J.K. Nørskov, T.F. Jaramillo and J. Rossmeisl, J. Phys. Chem. Chem. Phys., 14, 14010 (2012); https://doi.org/10.1039/c2cp40841d.
- A. Ramírez, D. Friedrich, M. Kunst and S. Fiechter, Chem. Phys. Lett., 568-569, 157 (2013); https://doi.org/10.1016/j.cplett.2013.03.054.
- M.M. Najafpour, F. Rahimi, M. Amini, S. Nayeri and M. Bagherzadeh, Dalton Trans., 41, 11026 (2012); https://doi.org/10.1039/c2dt30553d.
- S.L. Brock, N. Duan, Z.R. Tian, O. Giraldo, H. Zhou and S.L. Suib, Chem. Mater., 10, 2619 (1998); https://doi.org/10.1021/cm980227h.
- S.L. Suib, J. Mater. Chem., 18, 1623 (2008); https://doi.org/10.1039/b714966m.
- X. Fang, X. Lu, X. Guo, Y. Mao, Y.S. Hu, J. Wang, Z. Wang, F. Wu, H. Liu and L. Chen, Electrochem. Commun., 12, 1520 (2010); https://doi.org/10.1016/j.elecom.2010.08.023.
- W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh and J.T. Park, Angew. Chem. Int. Ed., 43, 1115 (2004); https://doi.org/10.1002/anie.200352400.
- S.T. Myung, S. Komaba and N. Kumagai, Electrochim. Acta, 47, 3287 (2002); https://doi.org/10.1016/S0013-4686(02)00248-7.
- Y. Lvov, B. Munge, O. Giraldo, I. Ichinose, S.L. Suib and J.F. Rusling, Langmuir, 16, 8850 (2000); https://doi.org/10.1021/la000110j.
- X.-L. Luo, J.-J. Xu, W. Zhao and H.-Y. Chen, Biosens. Bioelectron., 19, 1295 (2004); https://doi.org/10.1016/j.bios.2003.11.019.
- X. Liu, C. Chen, Y. Zhao and B. Jia, J. Nanomater., Article ID 736375 (2013); https://doi.org/10.1155/2013/736375.
- R. Ramprasath, G. Kalpana and T. Pandiselvi, Impl. J. Interdiscipl. Res., 2, 1409 (2016).
- M.M. Najafpour, F. Rahimi, E.-M. Aro, C.-H. Lee and S.I. Allakhverdiev, J. R. Soc. Interface, 9, 2383 (2012); https://doi.org/10.1098/rsif.2012.0412.
- Y.Q. Chang, X.Y. Xu, X.H. Luo, C.P. Chen and D.P. Yu, J. Cryst. Growth, 264, 232 (2004); https://doi.org/10.1016/j.jcrysgro.2003.11.117.
- S.K. Park, A. Jin, S.H. Yu, J. Ha, B. Jang, S. Bong, S. Woo, Y.E. Sung and Y. Piao, Electrochim. Acta, 120, 452 (2014); https://doi.org/10.1016/j.electacta.2013.12.018.
- H. Chang, Y. Guo, L. Yang, Q. Liu, W. Feng, J. Liang and G. Rao, J. Solid State Chem., 177, 4341 (2004); https://doi.org/10.1016/j.jssc.2004.07.040.
- E. Finocchio and G. Busca, Catal. Today, 70, 213 (2001); https://doi.org/10.1016/S0920-5861(01)00419-9.
- S.K. Apte, S.D. Naik, R.S. Sonawane, B.B. Kale, N. Pavaskar, A.B. Mandale and B.K. Das, Mater. Res. Bull., 41, 647 (2006); https://doi.org/10.1016/j.materresbull.2005.08.028.
- Z.W. Chen, J.K.L. Lai and C.H. Shek, Scr. Mater., 55, 735 (2006); https://doi.org/10.1016/j.scriptamat.2006.05.041.
- M. Salavati-Niasari, F. Davar and M. Mazaheri, Poly., 27, 3467 (2008); https://doi.org/10.1016/j.poly.2008.04.015.
- X. Tai, X. Yin, Q. Chen and M. Tan, Molecules, 8, 439 (2003); https://doi.org/10.3390/80500439.
- T. Ozkaya, A. Baykal, H. Kavas, Y. Ko¨seog¢lu and M.S. Toprak, Physica B, 403, 3760 (2008); https://doi.org/10.1016/j.physb.2008.07.002.
- L. He, G. Zhang, Y. Dong, Z. Zhang, S. Xue and X. Jiang, Nano-Micro Lett., 6, 38 (2014); https://doi.org/10.1007/BF03353767.
- M. Wang, G.-H. Lee, Y. Wang, T.-Y. Dong and H.-H. Wei, J. Chin. Chem. Soc., 49, 825 (2002); https://doi.org/10.1002/jccs.200200118.
- R. Vafazadeh, V. Hayeri and A.C. Willis, Polyhedron, 29, 1810 (2010); https://doi.org/10.1016/j.poly.2010.02.030.
- T. Akitsu and Y. Einaga, Polyhedron, 25, 1089 (2006); https://doi.org/10.1016/j.poly.2005.07.048.
- M. Sebastian, V. Arun, P.P. Robinson, A.A. Varghese, R. Abraham, E. Suresh and K.K.M. Yusuff, Polyhedron, 29, 3014 (2010); https://doi.org/10.1016/j.poly.2010.08.016.
- W. Xiao, J.S. Chen and X.W.D. Lou, CrystEngComm, 13, 5685 (2011); https://doi.org/10.1039/c1ce05711a.
References
V. Arun, N. Sridevi, P.P. Robinson, S. Manju and K.K.M. Yusuff, J. Mol. Catal. Chem., 304, 191 (2009); https://doi.org/10.1016/j.molcata.2009.02.011.
K.C. Gupta and A.K. Sutar, Coord. Chem. Rev., 252, 1420 (2008); https://doi.org/10.1016/j.ccr.2007.09.005.
Y.-B. Dong, H.-Q. Zhang, J.-P. Ma, R.-Q. Huang and C.-Y. Su, Cryst. Growth Des., 5, 1857 (2005); https://doi.org/10.1021/cg0501534.
A.K. Ghosh, D. Ghoshal, J. Ribas, G. Mostafa and N.R. Chaudhuri, Cryst. Growth Des., 6, 36 (2006); https://doi.org/10.1021/cg050423i.
P. Phuengphai, S. Youngme, P. Kongsaeree, C. Pakawatchai, N. Chaichit, S.J. Teat, P. Gamez and J. Reedijk, CrystEngComm, 11, 1723 (2009); https://doi.org/10.1039/b901607d.
P.A. Vigato and S. Tamburini, Coord. Chem. Rev., 248, 1717 (2004); https://doi.org/10.1016/j.cct.2003.09.003.
D. Pucci, A. Bellusci, A. Crispini, M. Ghedini and M. La Deda, Inorg. Chim. Acta, 357, 495 (2004); https://doi.org/10.1016/j.ica.2003.08.015.
C. Biswas, M.G.B. Drew, A. Figuerola, S. Gómez-Coca, E. Ruiz, V. Tangoulis and A. Ghosh, Inorg. Chim. Acta, 363, 846 (2010); https://doi.org/10.1016/j.ica.2009.12.048.
K. Fan, C. Cao, Y. Pan, D. Lu, D. Yang, J. Feng, L. Song, M. Liang and X. Yan, Nat. Nanotechnol., 7, 459 (2012); https://doi.org/10.1038/nnano.2012.90.
C.R. Olsen, T.J. Smith, J.S. Embley, J.H. Maxfield, K.R. Hansen, J.R. Peterson, A.M. Henrichsen, S.D. Erickson, D.C. Buck, J.S. Colton and R.K. Watt, Nanotechnology, 28, 195601 (2017); https://doi.org/10.1088/1361-6528/aa68ae.
H.-Y. Su, Y. Gorlin, I.C. Man, F. Calle-Vallejo, J.K. Nørskov, T.F. Jaramillo and J. Rossmeisl, J. Phys. Chem. Chem. Phys., 14, 14010 (2012); https://doi.org/10.1039/c2cp40841d.
A. Ramírez, D. Friedrich, M. Kunst and S. Fiechter, Chem. Phys. Lett., 568-569, 157 (2013); https://doi.org/10.1016/j.cplett.2013.03.054.
M.M. Najafpour, F. Rahimi, M. Amini, S. Nayeri and M. Bagherzadeh, Dalton Trans., 41, 11026 (2012); https://doi.org/10.1039/c2dt30553d.
S.L. Brock, N. Duan, Z.R. Tian, O. Giraldo, H. Zhou and S.L. Suib, Chem. Mater., 10, 2619 (1998); https://doi.org/10.1021/cm980227h.
S.L. Suib, J. Mater. Chem., 18, 1623 (2008); https://doi.org/10.1039/b714966m.
X. Fang, X. Lu, X. Guo, Y. Mao, Y.S. Hu, J. Wang, Z. Wang, F. Wu, H. Liu and L. Chen, Electrochem. Commun., 12, 1520 (2010); https://doi.org/10.1016/j.elecom.2010.08.023.
W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh and J.T. Park, Angew. Chem. Int. Ed., 43, 1115 (2004); https://doi.org/10.1002/anie.200352400.
S.T. Myung, S. Komaba and N. Kumagai, Electrochim. Acta, 47, 3287 (2002); https://doi.org/10.1016/S0013-4686(02)00248-7.
Y. Lvov, B. Munge, O. Giraldo, I. Ichinose, S.L. Suib and J.F. Rusling, Langmuir, 16, 8850 (2000); https://doi.org/10.1021/la000110j.
X.-L. Luo, J.-J. Xu, W. Zhao and H.-Y. Chen, Biosens. Bioelectron., 19, 1295 (2004); https://doi.org/10.1016/j.bios.2003.11.019.
X. Liu, C. Chen, Y. Zhao and B. Jia, J. Nanomater., Article ID 736375 (2013); https://doi.org/10.1155/2013/736375.
R. Ramprasath, G. Kalpana and T. Pandiselvi, Impl. J. Interdiscipl. Res., 2, 1409 (2016).
M.M. Najafpour, F. Rahimi, E.-M. Aro, C.-H. Lee and S.I. Allakhverdiev, J. R. Soc. Interface, 9, 2383 (2012); https://doi.org/10.1098/rsif.2012.0412.
Y.Q. Chang, X.Y. Xu, X.H. Luo, C.P. Chen and D.P. Yu, J. Cryst. Growth, 264, 232 (2004); https://doi.org/10.1016/j.jcrysgro.2003.11.117.
S.K. Park, A. Jin, S.H. Yu, J. Ha, B. Jang, S. Bong, S. Woo, Y.E. Sung and Y. Piao, Electrochim. Acta, 120, 452 (2014); https://doi.org/10.1016/j.electacta.2013.12.018.
H. Chang, Y. Guo, L. Yang, Q. Liu, W. Feng, J. Liang and G. Rao, J. Solid State Chem., 177, 4341 (2004); https://doi.org/10.1016/j.jssc.2004.07.040.
E. Finocchio and G. Busca, Catal. Today, 70, 213 (2001); https://doi.org/10.1016/S0920-5861(01)00419-9.
S.K. Apte, S.D. Naik, R.S. Sonawane, B.B. Kale, N. Pavaskar, A.B. Mandale and B.K. Das, Mater. Res. Bull., 41, 647 (2006); https://doi.org/10.1016/j.materresbull.2005.08.028.
Z.W. Chen, J.K.L. Lai and C.H. Shek, Scr. Mater., 55, 735 (2006); https://doi.org/10.1016/j.scriptamat.2006.05.041.
M. Salavati-Niasari, F. Davar and M. Mazaheri, Poly., 27, 3467 (2008); https://doi.org/10.1016/j.poly.2008.04.015.
X. Tai, X. Yin, Q. Chen and M. Tan, Molecules, 8, 439 (2003); https://doi.org/10.3390/80500439.
T. Ozkaya, A. Baykal, H. Kavas, Y. Ko¨seog¢lu and M.S. Toprak, Physica B, 403, 3760 (2008); https://doi.org/10.1016/j.physb.2008.07.002.
L. He, G. Zhang, Y. Dong, Z. Zhang, S. Xue and X. Jiang, Nano-Micro Lett., 6, 38 (2014); https://doi.org/10.1007/BF03353767.
M. Wang, G.-H. Lee, Y. Wang, T.-Y. Dong and H.-H. Wei, J. Chin. Chem. Soc., 49, 825 (2002); https://doi.org/10.1002/jccs.200200118.
R. Vafazadeh, V. Hayeri and A.C. Willis, Polyhedron, 29, 1810 (2010); https://doi.org/10.1016/j.poly.2010.02.030.
T. Akitsu and Y. Einaga, Polyhedron, 25, 1089 (2006); https://doi.org/10.1016/j.poly.2005.07.048.
M. Sebastian, V. Arun, P.P. Robinson, A.A. Varghese, R. Abraham, E. Suresh and K.K.M. Yusuff, Polyhedron, 29, 3014 (2010); https://doi.org/10.1016/j.poly.2010.08.016.
W. Xiao, J.S. Chen and X.W.D. Lou, CrystEngComm, 13, 5685 (2011); https://doi.org/10.1039/c1ce05711a.