Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Prediction of Interactions between Binary Mixtures of Aliphatic Amines and Aliphatic Acetates
Corresponding Author(s) : Krishan Kumar
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
The refractive indices (n) of aliphatic amines and aliphatic acetates were measured at different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) on the entire composition as CO2 capture is a fast-developing field with amine based technologies due to their reversible reaction with CO2. The aliphatic amines selected were diethylenetriamine, dibutylamine and tributylamineand methyl acetate, ethyl acetate, propyl acetate, butyl acetate and pentyl acetate respectively. All the possible binary mixtures of these aliphatic amines and acetates were taken for determining the experimental refractive indices and various empirical correlations like Arago-Biot, Gladstone-Dale, Lorentz-Lorenz, Heller, Weiner, Newton and Erying-John were applied to experimental data for estimating theoretical value of refractive indices. To evaluate the standard deviation, Redlich-Kister polynomial equation was applied to the measured refractive indices data.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.P.D. Santos, Comparative Study of Amine Solutions Used in CO2 Absorption/Desorption Cycles, Instituto Superior de Engenharia de Lisboa, pp. 1-65 (2013).
- S. Fang and C.-H. He, AIChe J., 57, 517 (2011); https://doi.org/10.1002/aic.12272.
- J.A. González, I.G. de la Fuentá and J.C. Cobos, Fluid Phase Equilib., 168, 31 (2000); https://doi.org/10.1016/S0378-3812(99)00326-X.
- I. Alonso, V. Alonso, I. Mozo, I. García de la Fuente, J.A. González and J.C. Cobos, J. Mol. Liq., 155, 109 (2010); https://doi.org/10.1016/j.molliq.2010.05.022.
- J.A. González, I. Alonso, I. Mozo, I. García de la Fuente and J.C. Cobos, J. Chem. Thermodyn., 43, 1506 (2011); https://doi.org/10.1016/j.jct.2011.05.003.
- J.A. González, I. Alonso, I. García De La Fuente and J.C. Cobos, Fluid Phase Equilib., 343, 1 (2013); https://doi.org/10.1016/j.fluid.2013.01.011.
- F. Hevia, A. Cobos, J.A. González, I. García de la Fuente and L.F. Sanz, J. Chem. Eng. Data, 61, 1468 (2016); https://doi.org/10.1021/acs.jced.5b00802.
- E. Matteoli, E. Gianni and L. Lepori, Fluid Phase Equilib., 306, 234 (2011); https://doi.org/10.1016/j.fluid.2011.04.013.
- S. Gahlyan, M. Rani, I. Lee, I. Moon and S.K. Maken, Korean J. Chem. Eng., 32, 168 (2015); https://doi.org/10.1007/s11814-014-0200-6.
- S. Gahlyan, M. Rani, S. Maken, H. Kwon, K. Tak and I. Moon, J. Ind. Eng. Chem., 23, 299 (2015); https://doi.org/10.1016/j.jiec.2014.08.032.
- S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 219, 1107 (2016); https://doi.org/10.1016/j.molliq.2016.04.011.
- P. Brocos, A. Piñeiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003); https://doi.org/10.1039/b208765k.
- F. Sarmiento, M.I. Paz Andrade, J. Fernandez, R. Bravo and M. Pintos, J. Chem. Eng. Data, 30, 321 (1985); https://doi.org/10.1021/je00041a025.
- H. Funke, M. Wetzel and A. Heintz, Pure Appl. Chem., 61, 1429 (1989); https://doi.org/10.1351/pac198961081429.
- S.L. Oswal and N.B. Patel, J. Chem. Eng. Data, 45, 225 (2000); https://doi.org/10.1021/je980305h.
- J. Konicek, I. Wadso, W.E. Jamison, A.F. Andresen, J.E. Engebretsen and L. Ehrenberg, Acta Chem. Scand. A, 25, 1541 (1971); https://doi.org/10.3891/acta.chem.scand.25-1541.
- J.M. Resa, C. González, S.O. de Landaluce and J. Lanz, J. Chem. Eng. Data, 45, 867 (2000); https://doi.org/10.1021/je000020g.
- C.M. Kinart, W.J. Kinart, D. Checinska-Majak and A. Cwiklinska, Phys. Chem. Liq., 41, 383 (2003); https://doi.org/10.1080/0031910031000120603.
- O. Iulian, A. Stefaniu, O. Ciocirlan and A. Fedeles, UPB Sci. Bull. B, 72, 37 (2010).
- M. Catrinciuc, O. Iulian, I. Nita, M. Iosif, Ovidius Univ. Ann. Chem., 16, 334 (2005).
- A. Kumari, K. Sandeepa, T.P. Kumar and B. Satyavathi, J. Chem. Eng. Data, 61, 67 (2016); https://doi.org/10.1021/acs.jced.5b00197.
- A.I. Vogel, A Text Book of Practical Organic Chemistry, ELBS Longman: London, edn 4 (1978).
- J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, vol. 1, Wiley: New York (1986).
- G.P. Dubey and K. Kumar, J. Mol. Liq., 180, 164 (2013); https://doi.org/10.1016/j.molliq.2013.01.011.
- D.J. Rouleau and A.R. Thompson, J. Chem. Eng. Data, 7, 356 (1962); https://doi.org/10.1021/je60014a010.
- S.L. Oswal, P. Oswal, R.L. Gardas, S.G. Patel and R.G. Shinde, Fluid Phase Equilib., 216, 33 (2004); https://doi.org/10.1016/j.fluid.2003.09.007.
- S.L. Oswal, P. Oswal, P.S. Modi, J.P. Dave and R.L. Gardas, Thermochim. Acta, 410, 1 (2004); https://doi.org/10.1016/S0040-6031(03)00368-X.
- I. Bou Malham and M. Turmine, J. Chem. Thermodyn., 40, 718 (2008); https://doi.org/10.1016/j.jct.2007.10.002.
- E. Vercher, F.J. Llopis, V. González-Alfaro, P.J. Miguel, V. Orchillés and A. Martínez-Andreu, J. Chem. Thermodyn., 90, 174 (2015); https://doi.org/10.1016/j.jct.2015.06.036
References
S.P.D. Santos, Comparative Study of Amine Solutions Used in CO2 Absorption/Desorption Cycles, Instituto Superior de Engenharia de Lisboa, pp. 1-65 (2013).
S. Fang and C.-H. He, AIChe J., 57, 517 (2011); https://doi.org/10.1002/aic.12272.
J.A. González, I.G. de la Fuentá and J.C. Cobos, Fluid Phase Equilib., 168, 31 (2000); https://doi.org/10.1016/S0378-3812(99)00326-X.
I. Alonso, V. Alonso, I. Mozo, I. García de la Fuente, J.A. González and J.C. Cobos, J. Mol. Liq., 155, 109 (2010); https://doi.org/10.1016/j.molliq.2010.05.022.
J.A. González, I. Alonso, I. Mozo, I. García de la Fuente and J.C. Cobos, J. Chem. Thermodyn., 43, 1506 (2011); https://doi.org/10.1016/j.jct.2011.05.003.
J.A. González, I. Alonso, I. García De La Fuente and J.C. Cobos, Fluid Phase Equilib., 343, 1 (2013); https://doi.org/10.1016/j.fluid.2013.01.011.
F. Hevia, A. Cobos, J.A. González, I. García de la Fuente and L.F. Sanz, J. Chem. Eng. Data, 61, 1468 (2016); https://doi.org/10.1021/acs.jced.5b00802.
E. Matteoli, E. Gianni and L. Lepori, Fluid Phase Equilib., 306, 234 (2011); https://doi.org/10.1016/j.fluid.2011.04.013.
S. Gahlyan, M. Rani, I. Lee, I. Moon and S.K. Maken, Korean J. Chem. Eng., 32, 168 (2015); https://doi.org/10.1007/s11814-014-0200-6.
S. Gahlyan, M. Rani, S. Maken, H. Kwon, K. Tak and I. Moon, J. Ind. Eng. Chem., 23, 299 (2015); https://doi.org/10.1016/j.jiec.2014.08.032.
S. Gahlyan, M. Rani and S. Maken, J. Mol. Liq., 219, 1107 (2016); https://doi.org/10.1016/j.molliq.2016.04.011.
P. Brocos, A. Piñeiro, R. Bravo and A. Amigo, Phys. Chem. Chem. Phys., 5, 550 (2003); https://doi.org/10.1039/b208765k.
F. Sarmiento, M.I. Paz Andrade, J. Fernandez, R. Bravo and M. Pintos, J. Chem. Eng. Data, 30, 321 (1985); https://doi.org/10.1021/je00041a025.
H. Funke, M. Wetzel and A. Heintz, Pure Appl. Chem., 61, 1429 (1989); https://doi.org/10.1351/pac198961081429.
S.L. Oswal and N.B. Patel, J. Chem. Eng. Data, 45, 225 (2000); https://doi.org/10.1021/je980305h.
J. Konicek, I. Wadso, W.E. Jamison, A.F. Andresen, J.E. Engebretsen and L. Ehrenberg, Acta Chem. Scand. A, 25, 1541 (1971); https://doi.org/10.3891/acta.chem.scand.25-1541.
J.M. Resa, C. González, S.O. de Landaluce and J. Lanz, J. Chem. Eng. Data, 45, 867 (2000); https://doi.org/10.1021/je000020g.
C.M. Kinart, W.J. Kinart, D. Checinska-Majak and A. Cwiklinska, Phys. Chem. Liq., 41, 383 (2003); https://doi.org/10.1080/0031910031000120603.
O. Iulian, A. Stefaniu, O. Ciocirlan and A. Fedeles, UPB Sci. Bull. B, 72, 37 (2010).
M. Catrinciuc, O. Iulian, I. Nita, M. Iosif, Ovidius Univ. Ann. Chem., 16, 334 (2005).
A. Kumari, K. Sandeepa, T.P. Kumar and B. Satyavathi, J. Chem. Eng. Data, 61, 67 (2016); https://doi.org/10.1021/acs.jced.5b00197.
A.I. Vogel, A Text Book of Practical Organic Chemistry, ELBS Longman: London, edn 4 (1978).
J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, vol. 1, Wiley: New York (1986).
G.P. Dubey and K. Kumar, J. Mol. Liq., 180, 164 (2013); https://doi.org/10.1016/j.molliq.2013.01.011.
D.J. Rouleau and A.R. Thompson, J. Chem. Eng. Data, 7, 356 (1962); https://doi.org/10.1021/je60014a010.
S.L. Oswal, P. Oswal, R.L. Gardas, S.G. Patel and R.G. Shinde, Fluid Phase Equilib., 216, 33 (2004); https://doi.org/10.1016/j.fluid.2003.09.007.
S.L. Oswal, P. Oswal, P.S. Modi, J.P. Dave and R.L. Gardas, Thermochim. Acta, 410, 1 (2004); https://doi.org/10.1016/S0040-6031(03)00368-X.
I. Bou Malham and M. Turmine, J. Chem. Thermodyn., 40, 718 (2008); https://doi.org/10.1016/j.jct.2007.10.002.
E. Vercher, F.J. Llopis, V. González-Alfaro, P.J. Miguel, V. Orchillés and A. Martínez-Andreu, J. Chem. Thermodyn., 90, 174 (2015); https://doi.org/10.1016/j.jct.2015.06.036