Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Qualitative and Quantitative Phytochemical Analysis of Leaves and Roots of Barleria dinteri with Varying Exposure to Road-Dust Pollution
Corresponding Author(s) : Sechene Stanley Gololo
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
The aim of the study was to undertake qualitative and quantitative phytochemical analysis of the samples of an African traditional herb, Barleria dinteri, with varying exposure to road-dust pollution. Both leaves and roots samples of B. dinteri were collected at two collection sites, one near a dusty road (test sample) and another away from a dusty road (control sample) in Zebediela sub-region of the Limpopo province of South Africa. The sample extracts were subjected to qualitative phytochemical analysis through chemical tests, thin layer chromatography and ultraviolet-visible spectrophotometry. The sample extracts were also subjected to spectrophotometric quantitative analysis of total phenolic content, total tannin content, total flavonoid content and total saponin content. Qualitative analysis results showed no substantial differences in the phytochemical compositions of the extracts obtained from test and control samples. Quantitative analysis results showed higher amounts of total phenolic, total tannin, total flavonoid and total saponin contents in the leaf test sample extracts than those of the control sample. Total phenolic and flavonoid contents were also present in higher amounts in the root test sample, whereas total tannins were higher in the control sample. The results demonstrate that the exposure to road-dust pollution have some moderate effect on the quality of phytochemicals possessed by the leaves and roots of B. dinteri, although substantial quantitative effect in the phytochemicals was demonstrated. The findings of the study therefore suggest that the exposure to road-dust pollution enhance accumulation in the phytochemicals possessed by Barleria dinteri, more especially in the leaves.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.E. Van Wyk, B. Van Oudsthoorn and N. Gericke, Medicinal Plants of South Africa, Briza Publications: Pretoria, South Africa, pp. 1-336 (1997).
- A. Maroyi, Afr. J. Tradit. Complement. Altern. Med., 13, 5 (2016); https://doi.org/10.21010/ajtcam.v13i6.2.
- A. Wadood, M. Ghufran, S.B. Jamal, M. Naeem and A. Khan, Biochem. Anal. Biochem., 2, 1 (2013); https://doi.org/10.4172/2161-1009.1000144.
- S.S. Gololo, N.S. Mapfumari, L.J. Shai, L. Sethoga, M.T. Olivier, F.M. Muganzaand and M.A. Mogale, eds.: A.A. Mahdi, M. Abid and M.M.A. Ali Khan, Disparities in the Phytochemical Constituents of the Leaf Samples of Senna italica (Mill) collected from Four Different Locations, In: Phytochemistry and Pharmacology of Medicinal Plants,Lenin Media Pvt Ltd.: Delhi, India, pp. 1-15 (2017).
- M. Björkman, I. Klingen, A.N.E. Birch, A.M. Bones, T.J.A. Bruce, T.J. Johansen, R. Meadow, J. Mølmann, R. Seljåsen, L.E. Smart and D. Stewart, Phytochemistry, 72, 538 (2011); https://doi.org/10.1016/j.phytochem.2011.01.014.
- U.A. Pamila and S. Karpagam, Int. Res. J. Biochem. Biotechnol., 4, 61 (2017).
- S.K. Leghari, M.S. Zaid, A.M. Sarangzai and M. Faheem, Afr. J. Biotechnol., 13, 1237 (2013).
- A. Ata, K.S. Kalhari and R. Samarasekera, Phytochem. Lett., 2, 37 (2009); https://doi.org/10.1016/j.phytol.2008.11.005.
- A.K. Maji, S. Bhadra, S. Mahapatra, P. Banerji and D. Banerjee, J. Pharmacogn., 3, 67 (2011); https://doi.org/10.5530/pj.2011.24.13.
- P. Masoko and J.N. Eloff, Afr. J. Tradit. Complement. Altern. Med., 4, 231 (2007).
- C. Alebiosu and Y. Yusuf, J. Pharm. Chem. Biol. Sci., 3, 214 (2015).
- A. Kumar and S. Sharma, Ind. Crops Prod., 28, 1 (2008); https://doi.org/10.1016/j.indcrop.2008.01.001.
- J. Parekh and S. Chanda, Afr. J. Biotechnol., 6, 766 (2007).
- K.O. Akinyemi, O. Oladapo, C.E. Okwara, C.C. Ibe and K.A. Fasure, BMC Complement. Altern. Med., 5, 6 (2005); https://doi.org/10.1186/1472-6882-5-6.
- H.O. Edeoga, D.E. Okwu and B.O. Mbaebie, Afr. J. Biotechnol., 4, 685 (2005); https://doi.org/10.5897/AJB2005.000-3127.
- A. Ghasemzadeh, H.Z.E. Jaafar, A. Rahmat, P.E.M. Wahab and M.R. Abd Halim, Int. J. Mol. Sci., 11, 3885 (2010); https://doi.org/10.3390/ijms11103885.
- D. Marinova, F. Ribarova and M. Atanassova, J. Univ. Chem. Technol. Metall., 40, 255 (2005).
- H.P. Makkar, P. Siddhuraju and K. Becker, Methods in Molecular Biology: Plant Secondary Metabolites, Human Press, Totowa, pp. 93-100 (2007).
- J. Senguttuvan, S. Paulsamy and K. Karthika, Asian Pac. J. Trop. Biomed., 4, S359 (2014); https://doi.org/10.12980/APJTB.4.2014C1030.
- A. Altemimi, N. Lakhssassi, A. Baharlouei, D. Watson and D. Lightfoot, Plants, 6, 42 (2017); https://doi.org/10.3390/plants6040042.
- S.S. Gololo, L.J. Shai, N.M. Agyei and M.A. Mogale, J. Pharmacogn. Phytother., 8, 168 (2016); https://doi.org/10.5897/JPP2016.0408.
References
B.E. Van Wyk, B. Van Oudsthoorn and N. Gericke, Medicinal Plants of South Africa, Briza Publications: Pretoria, South Africa, pp. 1-336 (1997).
A. Maroyi, Afr. J. Tradit. Complement. Altern. Med., 13, 5 (2016); https://doi.org/10.21010/ajtcam.v13i6.2.
A. Wadood, M. Ghufran, S.B. Jamal, M. Naeem and A. Khan, Biochem. Anal. Biochem., 2, 1 (2013); https://doi.org/10.4172/2161-1009.1000144.
S.S. Gololo, N.S. Mapfumari, L.J. Shai, L. Sethoga, M.T. Olivier, F.M. Muganzaand and M.A. Mogale, eds.: A.A. Mahdi, M. Abid and M.M.A. Ali Khan, Disparities in the Phytochemical Constituents of the Leaf Samples of Senna italica (Mill) collected from Four Different Locations, In: Phytochemistry and Pharmacology of Medicinal Plants,Lenin Media Pvt Ltd.: Delhi, India, pp. 1-15 (2017).
M. Björkman, I. Klingen, A.N.E. Birch, A.M. Bones, T.J.A. Bruce, T.J. Johansen, R. Meadow, J. Mølmann, R. Seljåsen, L.E. Smart and D. Stewart, Phytochemistry, 72, 538 (2011); https://doi.org/10.1016/j.phytochem.2011.01.014.
U.A. Pamila and S. Karpagam, Int. Res. J. Biochem. Biotechnol., 4, 61 (2017).
S.K. Leghari, M.S. Zaid, A.M. Sarangzai and M. Faheem, Afr. J. Biotechnol., 13, 1237 (2013).
A. Ata, K.S. Kalhari and R. Samarasekera, Phytochem. Lett., 2, 37 (2009); https://doi.org/10.1016/j.phytol.2008.11.005.
A.K. Maji, S. Bhadra, S. Mahapatra, P. Banerji and D. Banerjee, J. Pharmacogn., 3, 67 (2011); https://doi.org/10.5530/pj.2011.24.13.
P. Masoko and J.N. Eloff, Afr. J. Tradit. Complement. Altern. Med., 4, 231 (2007).
C. Alebiosu and Y. Yusuf, J. Pharm. Chem. Biol. Sci., 3, 214 (2015).
A. Kumar and S. Sharma, Ind. Crops Prod., 28, 1 (2008); https://doi.org/10.1016/j.indcrop.2008.01.001.
J. Parekh and S. Chanda, Afr. J. Biotechnol., 6, 766 (2007).
K.O. Akinyemi, O. Oladapo, C.E. Okwara, C.C. Ibe and K.A. Fasure, BMC Complement. Altern. Med., 5, 6 (2005); https://doi.org/10.1186/1472-6882-5-6.
H.O. Edeoga, D.E. Okwu and B.O. Mbaebie, Afr. J. Biotechnol., 4, 685 (2005); https://doi.org/10.5897/AJB2005.000-3127.
A. Ghasemzadeh, H.Z.E. Jaafar, A. Rahmat, P.E.M. Wahab and M.R. Abd Halim, Int. J. Mol. Sci., 11, 3885 (2010); https://doi.org/10.3390/ijms11103885.
D. Marinova, F. Ribarova and M. Atanassova, J. Univ. Chem. Technol. Metall., 40, 255 (2005).
H.P. Makkar, P. Siddhuraju and K. Becker, Methods in Molecular Biology: Plant Secondary Metabolites, Human Press, Totowa, pp. 93-100 (2007).
J. Senguttuvan, S. Paulsamy and K. Karthika, Asian Pac. J. Trop. Biomed., 4, S359 (2014); https://doi.org/10.12980/APJTB.4.2014C1030.
A. Altemimi, N. Lakhssassi, A. Baharlouei, D. Watson and D. Lightfoot, Plants, 6, 42 (2017); https://doi.org/10.3390/plants6040042.
S.S. Gololo, L.J. Shai, N.M. Agyei and M.A. Mogale, J. Pharmacogn. Phytother., 8, 168 (2016); https://doi.org/10.5897/JPP2016.0408.