Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Investigation on Physico-Sintering and Mechanical Properties of Clay Tiles Available in Kathmandu Valley of Nepal
Corresponding Author(s) : Jagadeesh Bhattarai
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
Physico-sintering and mechanical properties of 37 contemporary and ancient tiles of Kathmandu valley consisting of quartz, feldspars, spinel, mullite and hematite were studied using ASTM standards. Most of the tiles samples, i.e., about 73 % of the total tiles used here, have the water absorption and the apparent porosity in the range of 10-20 % and 20-35 %, respectively, while the bulk density of all the tile samples is found to be in the range of 1.5-2.2 g/cm3. The bulk density of the tile samples is found to be increased with decreasing the water absorption and apparent porosity. Most of the tile samples analyzed in this study showed the flexural strength in the range of 10-30 MPa. The flexural strength of all the clay tile samples is found to be decreased exponentially with increasing the physico-sintering properties. Consequently, durability of the tiles is directly influenced by their physico-sintering properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.W. Barsoum, Fundamentals of Ceramics, Taylor & Francis, Boca Raton: FL (2003).
- C.B. Carter and M.G. Norton, Ceramic Materials, Springer: New York (2007).
- B. Basu and K. Balani, Ceramics: Definition and Characteristics, in Advanced Structural Ceramics, The American Ceramic Society, John Wiley & Sons Inc.:New York, edn 1, pp. 1–13 (2011).
- W.D. Kingery, C.R. Bowen and A. Uhlman, Introduction to Ceramics, John Wiley & Sons Inc.: New York, edn 2 (1976).
- D.W. Richerson, Magic of Ceramics, Wiley-American Ceramic Society: Westerville USA (2000).
- IS 13712, Ceramic Tiles-Definition, Classifications, Characteristics and Making, Bureau of Indian Standards, New Delhi, pp. 1–5 (2006).
- G. Cultrone, C. Rodriguez-Navarro, E. Sebastian, O. Cazalla and M.J. De La Torre, Eur. J. Miner., 13, 621 (2001); https://doi.org/10.1127/0935-1221/2001/0013-0621.
- R. Vijayaragavan and S. Mullainathan, Asian J. Chem., 25, S449 (2013);
- H.A. El Nouhy, Hous. Buil. Natl. Res. Centre J., 9, 201 (2013).
- H.J. Alves, F.G. Melchiades and A.O. Boschi, J. Eur. Ceram. Soc., 32, 2095 (2012); https://doi.org/10.1016/j.jeurceramsoc.2012.03.019.
- B.O. Aduda and F.W. Nyongesa, Br. Ceram. Trans., 99, 206 (2000); https://doi.org/10.1179/096797800680956.
- R. Pickup, Br. Ceram. Trans., 96, 96 (1997).
- F.J. Torres and J. Alarcon, Ceram. Int., 31, 683 (2005); https://doi.org/10.1016/j.ceramint.2004.07.009.
- C. Leonelli, F. Bondioli, P. Veronesi, M. Romagnoli, T. Manfredini, G.C. Pellacani and V. Cannillo, J. Eur. Ceram. Soc., 21, 785 (2001); https://doi.org/10.1016/S0955-2219(00)00266-1.
- R.R. Oli, M.Sc. Project work, Assessment of Ceramic Floor Tiles and Bricks Available in Local Market of Kathmandu Valley, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal (2016).
- P. Paudyal, M.Sc. Project work, Assessment of Ceramic Wall Tiles and Bricks Available in Local Markets of Kathmandu Valley and Their Characterization, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal (2016).
- P. Budhathoki, P. Paudal, R.R. Oli, N. Duwal and J. Bhattarai, Int. J. Appl. Sci. Biotechnol., (2018) (In press).
- ASTM C20-00, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, In: Annual Book of ASTM Standards, Vol. 15.01, ASTM International, West Conshohocken, PA, USA (2015); https://doi.org/10.1520/C0020-00R15.
- ASTM C1161-13, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, In: Annual Book of ASTM Standards, vol. 15.01, ASTM International, West Conshohocken, PA, USA (2013); https://doi.org/10.1520/C1161-13.
- Y.P. Chapagain, M.Sc. Dissertation, Study on the Physico-Mineralogical, Sintering and Mechanical Properties of Bricks of Kathmandu Valley, Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal (2017).
- IS 13712, Ceramic Tiles-definition, Classifications, Characteristics and Making, Bureau of Indian Standards, New Delhi, pp. 1-5 (2006).
- ASTM C1424-15, Standard Test Methods for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature, In: ASTM International, West Conshohocken, PA (2015).
- ASTM C1421-16, Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, In: ASTM International, West Conshohocken, PA (2016).
- K. Traore, G.V. Ouédraogo, P. Blanchart, J.-P. Jernot and M. Gomina, J. Eur. Ceram. Soc., 27, 1677 (2007); https://doi.org/10.1016/j.jeurceramsoc.2006.04.147.
- R. Sokolár, L. Vodova, S. Grygarova, I. Stubòa and P. Sin, Ceram. Int., 38, 6607 (2012); https://doi.org/10.1016/j.ceramint.2012.05.046.
- G. Cultrone, E. Sebastian and M.J. de la Torre, Constr. Build. Mater., 19, 39 (2005); https://doi.org/10.1016/j.conbuildmat.2004.04.035.
- M.S. Tite, V. Kilikoglou and G. Vekinis, Archaeo., 43, 301 (2001); https://doi.org/10.1111/1475-4754.00019.
- R.L. Coble and W.D. Kingery, J. Am. Ceram. Soc., 39, 377 (1956); https://doi.org/10.1111/j.1151-2916.1956.tb15608.x.
- W.D. Callister Jr., Materials Science and Engineering, John Wiley & Sons: Hoboken, NJ (2010).
References
M.W. Barsoum, Fundamentals of Ceramics, Taylor & Francis, Boca Raton: FL (2003).
C.B. Carter and M.G. Norton, Ceramic Materials, Springer: New York (2007).
B. Basu and K. Balani, Ceramics: Definition and Characteristics, in Advanced Structural Ceramics, The American Ceramic Society, John Wiley & Sons Inc.:New York, edn 1, pp. 1–13 (2011).
W.D. Kingery, C.R. Bowen and A. Uhlman, Introduction to Ceramics, John Wiley & Sons Inc.: New York, edn 2 (1976).
D.W. Richerson, Magic of Ceramics, Wiley-American Ceramic Society: Westerville USA (2000).
IS 13712, Ceramic Tiles-Definition, Classifications, Characteristics and Making, Bureau of Indian Standards, New Delhi, pp. 1–5 (2006).
G. Cultrone, C. Rodriguez-Navarro, E. Sebastian, O. Cazalla and M.J. De La Torre, Eur. J. Miner., 13, 621 (2001); https://doi.org/10.1127/0935-1221/2001/0013-0621.
R. Vijayaragavan and S. Mullainathan, Asian J. Chem., 25, S449 (2013);
H.A. El Nouhy, Hous. Buil. Natl. Res. Centre J., 9, 201 (2013).
H.J. Alves, F.G. Melchiades and A.O. Boschi, J. Eur. Ceram. Soc., 32, 2095 (2012); https://doi.org/10.1016/j.jeurceramsoc.2012.03.019.
B.O. Aduda and F.W. Nyongesa, Br. Ceram. Trans., 99, 206 (2000); https://doi.org/10.1179/096797800680956.
R. Pickup, Br. Ceram. Trans., 96, 96 (1997).
F.J. Torres and J. Alarcon, Ceram. Int., 31, 683 (2005); https://doi.org/10.1016/j.ceramint.2004.07.009.
C. Leonelli, F. Bondioli, P. Veronesi, M. Romagnoli, T. Manfredini, G.C. Pellacani and V. Cannillo, J. Eur. Ceram. Soc., 21, 785 (2001); https://doi.org/10.1016/S0955-2219(00)00266-1.
R.R. Oli, M.Sc. Project work, Assessment of Ceramic Floor Tiles and Bricks Available in Local Market of Kathmandu Valley, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal (2016).
P. Paudyal, M.Sc. Project work, Assessment of Ceramic Wall Tiles and Bricks Available in Local Markets of Kathmandu Valley and Their Characterization, Central Department of Chemistry, Tribhuvan University, Kirtipur, Nepal (2016).
P. Budhathoki, P. Paudal, R.R. Oli, N. Duwal and J. Bhattarai, Int. J. Appl. Sci. Biotechnol., (2018) (In press).
ASTM C20-00, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water, In: Annual Book of ASTM Standards, Vol. 15.01, ASTM International, West Conshohocken, PA, USA (2015); https://doi.org/10.1520/C0020-00R15.
ASTM C1161-13, Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, In: Annual Book of ASTM Standards, vol. 15.01, ASTM International, West Conshohocken, PA, USA (2013); https://doi.org/10.1520/C1161-13.
Y.P. Chapagain, M.Sc. Dissertation, Study on the Physico-Mineralogical, Sintering and Mechanical Properties of Bricks of Kathmandu Valley, Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal (2017).
IS 13712, Ceramic Tiles-definition, Classifications, Characteristics and Making, Bureau of Indian Standards, New Delhi, pp. 1-5 (2006).
ASTM C1424-15, Standard Test Methods for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature, In: ASTM International, West Conshohocken, PA (2015).
ASTM C1421-16, Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, In: ASTM International, West Conshohocken, PA (2016).
K. Traore, G.V. Ouédraogo, P. Blanchart, J.-P. Jernot and M. Gomina, J. Eur. Ceram. Soc., 27, 1677 (2007); https://doi.org/10.1016/j.jeurceramsoc.2006.04.147.
R. Sokolár, L. Vodova, S. Grygarova, I. Stubòa and P. Sin, Ceram. Int., 38, 6607 (2012); https://doi.org/10.1016/j.ceramint.2012.05.046.
G. Cultrone, E. Sebastian and M.J. de la Torre, Constr. Build. Mater., 19, 39 (2005); https://doi.org/10.1016/j.conbuildmat.2004.04.035.
M.S. Tite, V. Kilikoglou and G. Vekinis, Archaeo., 43, 301 (2001); https://doi.org/10.1111/1475-4754.00019.
R.L. Coble and W.D. Kingery, J. Am. Ceram. Soc., 39, 377 (1956); https://doi.org/10.1111/j.1151-2916.1956.tb15608.x.
W.D. Callister Jr., Materials Science and Engineering, John Wiley & Sons: Hoboken, NJ (2010).