Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Identification of Co3O4·Fe3O4/CaO Spinel Supported Catalyst
Corresponding Author(s) : Salih Hadi Kadhim
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
Spinel supported catalyst, Co3O4·Fe3O4/CaO was synthesized by co-precipitation method via calcination at different temperatures (450, 650 and 800 ºC). The resulting powder of prepared precursors was characterizes by X-ray diffraction, atomic force microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, atomic absorption spectrophotometer and magnetic susceptibility measurements. The catalytic activity of the prepared catalyst was investigated by removal of Celestine blue B dye from the effluents of textile wastewater by adsorption and by photocatalytic degradation. The reaction was followed spectrophotometrically at lmax 644 nm.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.C. Buchanan, Ceramics Materials for Electronics, Marcel Dekker: New York, edn 3 (2004).
- F. Goga, R. Dudric, L. Bizo, A. Avram, A.H. Marincas, C. Varhely Jr. and T. Dippong, U.B.B. Studia Chem., 62, 261 (2016); https://doi.org/10.24193/subbchem.2017.1.23.
- G. Alex, Modern Ferrite Technology, Springer, edn 2 (2006).
- Q. Zhang, K. Singh, F. Guillou, C. Simon, Y. Breard, V. Caignaert and V. Hardy, Phys. Rev. B, 85, 054405 (2012); https://doi.org/10.1103/PhysRevB.85.054405.
- A.A. Bush, V.Ya. Shkurato, K.E. Kamentsev, A.S. Prokhorov, E.S. Zhukova, B.P. Gorshunov and V.I. Torgashev, Phys. Rev. B, 85, 214112 (2012); https://doi.org/10.1103/PhysRevB.85.214112.
- A. Maignan, C. Martin, K. Singh, C. Simon, O.I. Lebedev, J. Solid State Chem., 195, 41 (2012); https://doi.org/10.1016/j.jssc.2012.01.063.
- A. Avnishk, S.J. Vivek, S. Kuldeep and S. Raman, Int. J. Chem. Sci., 14, 3215 (2016).
- M.R. Kantserova, K.S. Gavrilenko, G.R. Kosmambetova, V.G. Il’in and S.N. Orlik, Theor. Exp. Chem., 39, 322 (2003); https://doi.org/10.1023/B:THEC.0000003494.21579.14.
- A.B. Djurišic, Y.H. Leung and A.M. Ching Ng, Mater. Horiz., 1, 400 (2014); https://doi.org/10.1039/c4mh00031e.
- E. Pelizzetti and C. Minero, Comments Inorg. Chem., 15, 297 (1994); https://doi.org/10.1080/02603599408035846.
- T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 43, 7520 (2014); https://doi.org/10.1039/C3CS60378D.;
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); https://doi.org/10.1021/cr00033a004.
- C.I. Pearce, J.R. Lloyd and J.T. Guthrie, Dyes Pigments, 58, 179 (2003); https://doi.org/10.1016/S0143-7208(03)00064-0.
- T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 77, 247 (2001); https://doi.org/10.1016/S0960-8524(00)00080-8.
- R.S. Juang, S.H. Lin and P.Y. Hsueh, J. Hazard. Mater., 182, 820 (2010); https://doi.org/10.1016/j.jhazmat.2010.06.113.
- U. Pagga and D. Brown, Chemosphere, 15, 479 (1986); https://doi.org/10.1016/0045-6535(86)90542-4.
- P. Borker and A.V. Salker, Mater. Sci. Eng., 133, 55 (2006); https://doi.org/10.1016/j.mseb.2006.05.007.
- K. Golka, S. Kopps and Z.W. Myslak, Toxicol. Lett., 151, 203 (2004); https://doi.org/10.1016/j.toxlet.2003.11.016.
- S.H. Lin and C.L. Lai, Environ. Int., 25, 497 (1999); https://doi.org/10.1016/S0160-4120(99)00015-X.
- A. Aguedach, S. Brosillon, J. Morvan and E.K. Lhadi, J. Hazard. Mater., 150, 250 (2008); https://doi.org/10.1016/j.jhazmat.2007.04.086.
- S. Sumathi and B.S. Manju, Enzyme Microb. Technol., 27, 347 (2000); https://doi.org/10.1016/S0141-0229(00)00234-9.
- F. Elisangela, Z. Andrea, D.G.Fabio, R. de Menezes Cristiano, D.L. Regina and C.-P. Arturc, Int. Biodegr. Biodegr., 63, 280 (2009); https://doi.org/10.1016/j.ibiod.2008.10.003.
- Swati, Munesh and R.C. Meena, Arch. Appl. Sci. Res., 4, 472 (2012);
- B.H. Hameed, A.L. Ahmad and K.N. Latiff, Dyes Pigments, 75, 143 (2007); https://doi.org/10.1016/j.dyepig.2006.05.039.
- M. Meeti and T.R. Sharma, Arch. Appl. Sci. Res., 3, 849 (2012).
- S.H.S. Chan, T.Y. Wu, J.C. Juan and C.Y. Teh, J. Chem. Technol. Biotechnol., 86, 1130 (2011); https://doi.org/10.1002/jctb.2636.
- H.K. Salih, Int. J. ChemTech Res., 9, 754 (2016).
- Q. Zhang, J. Yang, Y. Gao, C. Li and L. Sun, Appl. Petrochem. Res., 5, 247 (2015); https://doi.org/10.1007/s13203-015-0134-x.
- E. Manova, D. Paneva, B. Kunev, C. Estournès, E. Rivière, K. Tenchev, A. Léaustic and I. Mitov, J. Alloys Compd., 485, 356 (2009); https://doi.org/10.1016/j.jallcom.2009.05.107.
- Y. Devrim, E.D. Arica and A. Albostan, Int. J. Hydrogen Energy, 43, 11820 (2018); https://doi.org/10.1016/j.ijhydene.2018.03.047.
- M. Sawarkar, S.A. Pande and P.S. Agrawal, Int. J. Eng. Technol., 9, (2015).
- A.A. Jafar and K.P. Vijaya, J. Chem. Pharm. Res., 8, 624 (2016).
- S. Farhadi, S. Asma and J. Kosar, J. Nanostructure, 3, 199 (2013); https://doi.org/10.7508/JNS.2013.02.008.
- M.M. Sahasrabudhe and G.R. Pathade, Arch. Appl. Sci. Res., 3, 403 (2011).
- N. Chiwaye, L.L. Jewell, D.G. Billing, D. Naidoo, M. Ncube and N.J. Coville, Mater. Res. Bull., 56, 98 (2014); https://doi.org/10.1016/j.materresbull.2014.04.065.
- N.D. Kandpal, N. Sah, R. Loshali, R. Joshi and J. Prasad, J. Sci. Ind. Res. (India), 73, 87 (2014).
- R. Manigandan, K. Giribabu, R. Suresh, L. Vijayaakshmi, A. Stephen and V. Naraayanan, Chem. Sci. Trans., 2S1, S47 (2013); https://doi.org/10.7598/cst2013.10.
- A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib and A. Memic, Int. J. Nanomed., 7, 6003 (2012); https://doi.org/10.2147/IJN.S35347.
- C.N. Satterfield and N. Cahrles, Heterogeneous Catalysis in Practice, McGraw-Hill Inc.: New York, p. 106 (1980).
- C.L. Thomas, Catalytic Process and Proven Catalyst, Academic Press: New York, p. 68 (1970).
- M.A. Luma, I. Irina, H.H. Falah and W.B. Detlef, Int. J. Photoenergy, Article ID 503516 (2014); https://doi.org/10.1155/2014/503516.
- M.K. Sanjay, H.V. Jadhav, S.V. Bangale, P.N. Jagdale and R.B. Sambhaji, Adv. Appl. Sci. Res., 2, 252 (2011).
- Z.Z. Lazarevic, C. Jovalekic, D. Sekulic, M. Slankamenac, M. Romcevic, A. Milutinovic and N.Z. Romcevic, Sci. Sinter., 44, 331 (2012); https://doi.org/10.2298/SOS1203331L.
- G. Godillot, L. Guerlou-Demourgues, L. Croguennec, K.M. Shaju and C. Delmas, J. Phys. Chem., 117, 9065 (2013); https://doi.org/10.1021/jp3100359.
- F.J. Manjon, I. Tiuinyanu and V. Ursaki, Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds, Springer Series in Materials Science, vol. 189 (2014).
- M.Y. Arsent’ev, N.Y. Koval’ko, A.V. Shmigel’, P.A. Tikhonov and M.V. Kalinina, Glass Phys. Chem., 43, 376 (2017); https://doi.org/10.1134/S1087659617040022.
- G. Blasse, Philip Tech. Rev., 28, 23 (1967).
- S.H. Kadhim, Asian J. Chem., 30, 1650 (2018); https://doi.org/10.14233/ajchem.2018.21425.
- N.R. Jana, Y.F. Chen and X.G. Peng, Chem. Mater., 16, 3931 (2004); https://doi.org/10.1021/cm049221k.
- R.M. Mohamed, I.A. Mkhalid and E.S. Baeissa, J. Nanotechnol., Article ID 329082 (2012); https://doi.org/10.1155/2012/329082.
- M. Argyle and C. Bartholomew, Catalyst, 5, 145 (2015); https://doi.org/10.3390/catal5010145.
References
R.C. Buchanan, Ceramics Materials for Electronics, Marcel Dekker: New York, edn 3 (2004).
F. Goga, R. Dudric, L. Bizo, A. Avram, A.H. Marincas, C. Varhely Jr. and T. Dippong, U.B.B. Studia Chem., 62, 261 (2016); https://doi.org/10.24193/subbchem.2017.1.23.
G. Alex, Modern Ferrite Technology, Springer, edn 2 (2006).
Q. Zhang, K. Singh, F. Guillou, C. Simon, Y. Breard, V. Caignaert and V. Hardy, Phys. Rev. B, 85, 054405 (2012); https://doi.org/10.1103/PhysRevB.85.054405.
A.A. Bush, V.Ya. Shkurato, K.E. Kamentsev, A.S. Prokhorov, E.S. Zhukova, B.P. Gorshunov and V.I. Torgashev, Phys. Rev. B, 85, 214112 (2012); https://doi.org/10.1103/PhysRevB.85.214112.
A. Maignan, C. Martin, K. Singh, C. Simon, O.I. Lebedev, J. Solid State Chem., 195, 41 (2012); https://doi.org/10.1016/j.jssc.2012.01.063.
A. Avnishk, S.J. Vivek, S. Kuldeep and S. Raman, Int. J. Chem. Sci., 14, 3215 (2016).
M.R. Kantserova, K.S. Gavrilenko, G.R. Kosmambetova, V.G. Il’in and S.N. Orlik, Theor. Exp. Chem., 39, 322 (2003); https://doi.org/10.1023/B:THEC.0000003494.21579.14.
A.B. Djurišic, Y.H. Leung and A.M. Ching Ng, Mater. Horiz., 1, 400 (2014); https://doi.org/10.1039/c4mh00031e.
E. Pelizzetti and C. Minero, Comments Inorg. Chem., 15, 297 (1994); https://doi.org/10.1080/02603599408035846.
T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 43, 7520 (2014); https://doi.org/10.1039/C3CS60378D.;
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); https://doi.org/10.1021/cr00033a004.
C.I. Pearce, J.R. Lloyd and J.T. Guthrie, Dyes Pigments, 58, 179 (2003); https://doi.org/10.1016/S0143-7208(03)00064-0.
T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 77, 247 (2001); https://doi.org/10.1016/S0960-8524(00)00080-8.
R.S. Juang, S.H. Lin and P.Y. Hsueh, J. Hazard. Mater., 182, 820 (2010); https://doi.org/10.1016/j.jhazmat.2010.06.113.
U. Pagga and D. Brown, Chemosphere, 15, 479 (1986); https://doi.org/10.1016/0045-6535(86)90542-4.
P. Borker and A.V. Salker, Mater. Sci. Eng., 133, 55 (2006); https://doi.org/10.1016/j.mseb.2006.05.007.
K. Golka, S. Kopps and Z.W. Myslak, Toxicol. Lett., 151, 203 (2004); https://doi.org/10.1016/j.toxlet.2003.11.016.
S.H. Lin and C.L. Lai, Environ. Int., 25, 497 (1999); https://doi.org/10.1016/S0160-4120(99)00015-X.
A. Aguedach, S. Brosillon, J. Morvan and E.K. Lhadi, J. Hazard. Mater., 150, 250 (2008); https://doi.org/10.1016/j.jhazmat.2007.04.086.
S. Sumathi and B.S. Manju, Enzyme Microb. Technol., 27, 347 (2000); https://doi.org/10.1016/S0141-0229(00)00234-9.
F. Elisangela, Z. Andrea, D.G.Fabio, R. de Menezes Cristiano, D.L. Regina and C.-P. Arturc, Int. Biodegr. Biodegr., 63, 280 (2009); https://doi.org/10.1016/j.ibiod.2008.10.003.
Swati, Munesh and R.C. Meena, Arch. Appl. Sci. Res., 4, 472 (2012);
B.H. Hameed, A.L. Ahmad and K.N. Latiff, Dyes Pigments, 75, 143 (2007); https://doi.org/10.1016/j.dyepig.2006.05.039.
M. Meeti and T.R. Sharma, Arch. Appl. Sci. Res., 3, 849 (2012).
S.H.S. Chan, T.Y. Wu, J.C. Juan and C.Y. Teh, J. Chem. Technol. Biotechnol., 86, 1130 (2011); https://doi.org/10.1002/jctb.2636.
H.K. Salih, Int. J. ChemTech Res., 9, 754 (2016).
Q. Zhang, J. Yang, Y. Gao, C. Li and L. Sun, Appl. Petrochem. Res., 5, 247 (2015); https://doi.org/10.1007/s13203-015-0134-x.
E. Manova, D. Paneva, B. Kunev, C. Estournès, E. Rivière, K. Tenchev, A. Léaustic and I. Mitov, J. Alloys Compd., 485, 356 (2009); https://doi.org/10.1016/j.jallcom.2009.05.107.
Y. Devrim, E.D. Arica and A. Albostan, Int. J. Hydrogen Energy, 43, 11820 (2018); https://doi.org/10.1016/j.ijhydene.2018.03.047.
M. Sawarkar, S.A. Pande and P.S. Agrawal, Int. J. Eng. Technol., 9, (2015).
A.A. Jafar and K.P. Vijaya, J. Chem. Pharm. Res., 8, 624 (2016).
S. Farhadi, S. Asma and J. Kosar, J. Nanostructure, 3, 199 (2013); https://doi.org/10.7508/JNS.2013.02.008.
M.M. Sahasrabudhe and G.R. Pathade, Arch. Appl. Sci. Res., 3, 403 (2011).
N. Chiwaye, L.L. Jewell, D.G. Billing, D. Naidoo, M. Ncube and N.J. Coville, Mater. Res. Bull., 56, 98 (2014); https://doi.org/10.1016/j.materresbull.2014.04.065.
N.D. Kandpal, N. Sah, R. Loshali, R. Joshi and J. Prasad, J. Sci. Ind. Res. (India), 73, 87 (2014).
R. Manigandan, K. Giribabu, R. Suresh, L. Vijayaakshmi, A. Stephen and V. Naraayanan, Chem. Sci. Trans., 2S1, S47 (2013); https://doi.org/10.7598/cst2013.10.
A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib and A. Memic, Int. J. Nanomed., 7, 6003 (2012); https://doi.org/10.2147/IJN.S35347.
C.N. Satterfield and N. Cahrles, Heterogeneous Catalysis in Practice, McGraw-Hill Inc.: New York, p. 106 (1980).
C.L. Thomas, Catalytic Process and Proven Catalyst, Academic Press: New York, p. 68 (1970).
M.A. Luma, I. Irina, H.H. Falah and W.B. Detlef, Int. J. Photoenergy, Article ID 503516 (2014); https://doi.org/10.1155/2014/503516.
M.K. Sanjay, H.V. Jadhav, S.V. Bangale, P.N. Jagdale and R.B. Sambhaji, Adv. Appl. Sci. Res., 2, 252 (2011).
Z.Z. Lazarevic, C. Jovalekic, D. Sekulic, M. Slankamenac, M. Romcevic, A. Milutinovic and N.Z. Romcevic, Sci. Sinter., 44, 331 (2012); https://doi.org/10.2298/SOS1203331L.
G. Godillot, L. Guerlou-Demourgues, L. Croguennec, K.M. Shaju and C. Delmas, J. Phys. Chem., 117, 9065 (2013); https://doi.org/10.1021/jp3100359.
F.J. Manjon, I. Tiuinyanu and V. Ursaki, Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds, Springer Series in Materials Science, vol. 189 (2014).
M.Y. Arsent’ev, N.Y. Koval’ko, A.V. Shmigel’, P.A. Tikhonov and M.V. Kalinina, Glass Phys. Chem., 43, 376 (2017); https://doi.org/10.1134/S1087659617040022.
G. Blasse, Philip Tech. Rev., 28, 23 (1967).
S.H. Kadhim, Asian J. Chem., 30, 1650 (2018); https://doi.org/10.14233/ajchem.2018.21425.
N.R. Jana, Y.F. Chen and X.G. Peng, Chem. Mater., 16, 3931 (2004); https://doi.org/10.1021/cm049221k.
R.M. Mohamed, I.A. Mkhalid and E.S. Baeissa, J. Nanotechnol., Article ID 329082 (2012); https://doi.org/10.1155/2012/329082.
M. Argyle and C. Bartholomew, Catalyst, 5, 145 (2015); https://doi.org/10.3390/catal5010145.