Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, Antimicrobial and DNA Binding Studies of Cobalt(II) Complexes of 4-[(2-Mercapto-phenylimino)methyl]-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one
Corresponding Author(s) : M.K. Muraleedharan Nair
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
The synthesis and characterization of chloro, bromo, iodo, nitrato and perchlorato complexes of Co(II) with an antipyrine based Schiff base ligand, 4-[(2-mercapto-phenylimino)-methyl]-1,5-dimethyl-2- phenyl-1,2-dihydropyrazol-3-one (ATAC), are reported. All the complexes were characterized by elemental analysis, molar conductance in non-aqueous solvents, magnetic moment value, spectroscopic methods such as infrared and electronic as well as thermogravimetry. From the elemental analysis data and molar conductance measurements, the complexes can be formulated as, [Co(ATAC)Cl2], [Co(ATAC)Br2], [Co(ATAC)I2], [Co(ATAC)2(NO3)](NO3) and [Co(ATAC)2(ClO4)](ClO4). UV-Visible spectral data and magnetic moment values of complexes suggest a tetrahedral geometry for halide complexes and a distorted octahedral geometry for nitrato and perchlorato complexes. Antimicrobial activity of ligand and Co(II) complexes have been studied on both “Gram-positive” (Bacillus subtilis) and “Gram-negative” (Vibrio salmonella typhi and Escherichia coli,) bacteria and three fungi, viz., Aspergillus fumigatus, Aspergillus niger and Penicillium expansum. The results show that the ligand and the cobalt(II) complexes were significantly active against the tested microorganisms. Absorption spectroscopy, fluorescence spectroscopy and viscosity measurements have been used to study the binding ability of complexes with CT-DNA. The results indicate that the complexes bind with CT-DNA in an intercalative mode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Thakurta, J. Chakraborty, G. Rosair, R.J. Butcher and S. Mitra, Inorg. Chim. Acta, 362, 2828 (2009); https://doi.org/10.1016/j.ica.2009.01.002.
- D.N. Dhar and C. Taploo, J. Sci. Ind. Res. (India), 41, 501 (1982).
- M. Nishio, M. Matsuda, F. Ohyanagi, Y. Sato, S. Okumura, D. Tabata, A. Morikawa, K. Nakagawa and T. Horai, Lung Cancer, 49, 245 (2005); https://doi.org/10.1016/j.lungcan.2005.02.007.
- S. Bondock, R. Rabie, H.A. Etman and A.A. Fadda, Eur. J. Med. Chem., 43, 2122 (2008); https://doi.org/10.1016/j.ejmech.2007.12.009.
- S. Cunha, S.M. Oliveira, M.T. Rodrigues Jr., R.M. Bastos, J. Ferrari, C.M. de Oliveira, L. Kato, H.B. Napolitano, I. Vencato and C. Lariucci, J. Mol. Struct., 752, 32 (2005); https://doi.org/10.1016/j.molstruc.2005.05.016.
- M. Mahmoud, R. Abdel-Kader, M. Hassanein, S. Saleh and S. Botros, Eur. J. Pharmacol., 569, 222 (2007); https://doi.org/10.1016/j.ejphar.2007.04.061.
- G. Turan-Zitouni, M. Sivaci, F.S. Kiliç and K. Erol, Eur. J. Med. Chem., 36, 685 (2001); https://doi.org/10.1016/S0223-5234(01)01252-1.
- A.E. Rubtsov, R.R. Makhmudov, N.V. Kovylyaeva, N.I. Prosyanik, A.V. Bobrov and V.V. Zalesov, Pharm. Chem. J., 36, 608 (2002); https://doi.org/10.1023/A:1022669432631.
- A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, ELBS: London (1961).
- E. Kurz, G. Kober and M. Berl, Anal. Chem., 30, 1983 (1958); https://doi.org/10.1021/ac60144a030.
- D. Senthil Raja, N.S.P. Bhuvanesh and K. Natarajan, J. Biol. Inorg. Chem., 17, 223 (2012); https://doi.org/10.1007/s00775-011-0844-1.
- Z.C. Liu, B.D. Wang, Z.Y. Yang, Y. Li, D.D. Qin and T.R. Li, Eur. J. Med. Chem., 44, 4477 (2009); https://doi.org/10.1016/j.ejmech.2009.06.009.
- Z.C. Liu, B.D. Wang, B. Li, Q. Wang, Z.Y. Yang, T.R. Li and Y. Li, Eur. J. Med. Chem., 45, 5353 (2010); https://doi.org/10.1016/j.ejmech.2010.08.060.
- D.S. Raja, N.S.P. Bhuvanesh and K. Natarajan, Dalton Trans., 41, 4365 (2012); https://doi.org/10.1039/c2dt12274j.
- J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang and L. Ji, J. Inorg. Biochem., 91, 269 (2002); https://doi.org/10.1016/S0162-0134(02)00441-5.
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
- R.N. Jadeja and J.R. Shah, Polyhedron, 26, 1677 (2007); https://doi.org/10.1016/j.poly.2006.12.016.
- P.M. Vimal Kumar and P.K. Radhakrishnan, Polyhedron, 29, 2335 (2010); https://doi.org/10.1016/j.poly.2010.05.010.
- N.T. Madhu and P.K. Radhakrishnan, Transition Met. Chem., 25, 287 (2000); https://doi.org/10.1023/A:1007011724307.
- M. Alaudeen and P.K. Radhakrishnan, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 20, 673 (1990); https://doi.org/10.1080/00945719008048164.
- N.T. Madhu and P.K. Radhakrishnan, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 31, 1663 (2001); https://doi.org/10.1081/SIM-100107711.
- C.R. Vinodkumar and P.K. Radhakrishnan, Synth. React. Inorg. Met.- Org. Chem., 27, 1365 (1997); https://doi.org/10.1080/00945719708000164.
- K. Nakomoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York (1986).
- R.K. Agarwal, B. Prakash, V. Kumar and A.A. Khan, J. Iran Chem. Soc., 4, 114 (2007); https://doi.org/10.1007/BF03245809.
- R.B. Bennie, S.T. David, M. Sivthasaki, S.A.J. Mary, M. Seethalakshmi, S.D. Abraham, C. Joel and R. Antony, Chem. Sci. Trans., 33, 937 (2014); https://doi.org/10.7598/cst2014.805.
- E. Pahontu, V. Fala, A. Gulea, D. Poirier, V. Tapcov and T. Rosu, Molecules, 18, 8812 (2013); https://doi.org/10.3390/molecules18088812.
- T.M. Aminabhavi, N.S. Biradar, M.C. Divakar and W.E. Rudzinski, Inorg. Chim. Acta, 92, 99 (1984); https://doi.org/10.1016/S0020-1693(00)80005-5.
- B.N. Ghose and K.M. Lasisi, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 16, 1189 (1986); https://doi.org/10.1080/00945718608071386.
- L.K. Thompson, J.C.T. Rendell and G.C. Wellon, Can. J. Chem., 60, 514 (1982); https://doi.org/10.1139/v82-075.
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
- S. Dehghanpour and A. Mahmoudi, Synth. React. Inorg. Met.-Org. Chem., 37, 35 (2007); https://doi.org/10.1080/15533170601172427.
- M. Amirnasr, A.H. Mahmoudkhani, A. Gorji, S. Dehghanpour and H.R. Bijanzadeh, Polyhedron, 21, 2733 (2002); https://doi.org/10.1016/S0277-5387(02)01277-9.
- A. Sousa-Pedrares, N. Camiña, J. Romero, M.L. Durán, J.A. GarcíaVázquez and A. Sousa, Pohyhedron, 27, 3391 (2008); https://doi.org/10.1016/j.poly.2008.08.011.
- M. del Carmen Fernández-Fernández, R.B. de la Calle, A. Macías, L.V. Matarranz and P. Pérez-Lourido, Polyhedron, 27, 2301 (2008); https://doi.org/10.1016/j.poly.2008.04.043.
- M. Tuncel and S. Serin, Transition Met. Chem., 31, 805 (2006); https://doi.org/10.1007/s11243-006-0074-5.
- S. Chandra and A. Kumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68, 1410 (2007); https://doi.org/10.1016/j.saa.2006.12.079.
- J.K. Barton, A.T. Danishefsky and J.M. Goldberg, J. Am. Chem. Soc., 106, 2172 (1984); https://doi.org/10.1021/ja00319a043.
- M. Shebl, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 127 (2014); https://doi.org/10.1016/j.saa.2013.07.107.
- V. Uma, M. Kanthimathi, T. Weyhermuller and B.U. Nair, J. Inorg. Biochem., 99, 2299 (2005); https://doi.org/10.1016/j.jinorgbio.2005.08.011.
- S. Anbu and M. Kandaswamy, Polyhedron, 30, 123 (2011); https://doi.org/10.1016/j.poly.2010.09.041.
- S.O. Bahaffi, A.A. Abdel Aziz and M.M. El-Naggar, J. Mol. Struct., 1020, 188 (2012); https://doi.org/10.1016/j.molstruc.2012.04.017.
- J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); https://doi.org/10.1021/bi00745a020.
- H. Chao, W.-J. Mei, Q.-W. Huang and L.-N. Ji, J. Inorg. Biochem., 92, 165 (2002); https://doi.org/10.1016/S0162-0134(02)00543-3.
- S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 31, 9319 (1992); https://doi.org/10.1021/bi00154a001.
- S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 32, 2573 (1993); https://doi.org/10.1021/bi00061a015.
References
J. Thakurta, J. Chakraborty, G. Rosair, R.J. Butcher and S. Mitra, Inorg. Chim. Acta, 362, 2828 (2009); https://doi.org/10.1016/j.ica.2009.01.002.
D.N. Dhar and C. Taploo, J. Sci. Ind. Res. (India), 41, 501 (1982).
M. Nishio, M. Matsuda, F. Ohyanagi, Y. Sato, S. Okumura, D. Tabata, A. Morikawa, K. Nakagawa and T. Horai, Lung Cancer, 49, 245 (2005); https://doi.org/10.1016/j.lungcan.2005.02.007.
S. Bondock, R. Rabie, H.A. Etman and A.A. Fadda, Eur. J. Med. Chem., 43, 2122 (2008); https://doi.org/10.1016/j.ejmech.2007.12.009.
S. Cunha, S.M. Oliveira, M.T. Rodrigues Jr., R.M. Bastos, J. Ferrari, C.M. de Oliveira, L. Kato, H.B. Napolitano, I. Vencato and C. Lariucci, J. Mol. Struct., 752, 32 (2005); https://doi.org/10.1016/j.molstruc.2005.05.016.
M. Mahmoud, R. Abdel-Kader, M. Hassanein, S. Saleh and S. Botros, Eur. J. Pharmacol., 569, 222 (2007); https://doi.org/10.1016/j.ejphar.2007.04.061.
G. Turan-Zitouni, M. Sivaci, F.S. Kiliç and K. Erol, Eur. J. Med. Chem., 36, 685 (2001); https://doi.org/10.1016/S0223-5234(01)01252-1.
A.E. Rubtsov, R.R. Makhmudov, N.V. Kovylyaeva, N.I. Prosyanik, A.V. Bobrov and V.V. Zalesov, Pharm. Chem. J., 36, 608 (2002); https://doi.org/10.1023/A:1022669432631.
A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, ELBS: London (1961).
E. Kurz, G. Kober and M. Berl, Anal. Chem., 30, 1983 (1958); https://doi.org/10.1021/ac60144a030.
D. Senthil Raja, N.S.P. Bhuvanesh and K. Natarajan, J. Biol. Inorg. Chem., 17, 223 (2012); https://doi.org/10.1007/s00775-011-0844-1.
Z.C. Liu, B.D. Wang, Z.Y. Yang, Y. Li, D.D. Qin and T.R. Li, Eur. J. Med. Chem., 44, 4477 (2009); https://doi.org/10.1016/j.ejmech.2009.06.009.
Z.C. Liu, B.D. Wang, B. Li, Q. Wang, Z.Y. Yang, T.R. Li and Y. Li, Eur. J. Med. Chem., 45, 5353 (2010); https://doi.org/10.1016/j.ejmech.2010.08.060.
D.S. Raja, N.S.P. Bhuvanesh and K. Natarajan, Dalton Trans., 41, 4365 (2012); https://doi.org/10.1039/c2dt12274j.
J. Liu, T. Zhang, T. Lu, L. Qu, H. Zhou, Q. Zhang and L. Ji, J. Inorg. Biochem., 91, 269 (2002); https://doi.org/10.1016/S0162-0134(02)00441-5.
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0.
R.N. Jadeja and J.R. Shah, Polyhedron, 26, 1677 (2007); https://doi.org/10.1016/j.poly.2006.12.016.
P.M. Vimal Kumar and P.K. Radhakrishnan, Polyhedron, 29, 2335 (2010); https://doi.org/10.1016/j.poly.2010.05.010.
N.T. Madhu and P.K. Radhakrishnan, Transition Met. Chem., 25, 287 (2000); https://doi.org/10.1023/A:1007011724307.
M. Alaudeen and P.K. Radhakrishnan, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 20, 673 (1990); https://doi.org/10.1080/00945719008048164.
N.T. Madhu and P.K. Radhakrishnan, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 31, 1663 (2001); https://doi.org/10.1081/SIM-100107711.
C.R. Vinodkumar and P.K. Radhakrishnan, Synth. React. Inorg. Met.- Org. Chem., 27, 1365 (1997); https://doi.org/10.1080/00945719708000164.
K. Nakomoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York (1986).
R.K. Agarwal, B. Prakash, V. Kumar and A.A. Khan, J. Iran Chem. Soc., 4, 114 (2007); https://doi.org/10.1007/BF03245809.
R.B. Bennie, S.T. David, M. Sivthasaki, S.A.J. Mary, M. Seethalakshmi, S.D. Abraham, C. Joel and R. Antony, Chem. Sci. Trans., 33, 937 (2014); https://doi.org/10.7598/cst2014.805.
E. Pahontu, V. Fala, A. Gulea, D. Poirier, V. Tapcov and T. Rosu, Molecules, 18, 8812 (2013); https://doi.org/10.3390/molecules18088812.
T.M. Aminabhavi, N.S. Biradar, M.C. Divakar and W.E. Rudzinski, Inorg. Chim. Acta, 92, 99 (1984); https://doi.org/10.1016/S0020-1693(00)80005-5.
B.N. Ghose and K.M. Lasisi, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 16, 1189 (1986); https://doi.org/10.1080/00945718608071386.
L.K. Thompson, J.C.T. Rendell and G.C. Wellon, Can. J. Chem., 60, 514 (1982); https://doi.org/10.1139/v82-075.
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, edn 2 (1984).
S. Dehghanpour and A. Mahmoudi, Synth. React. Inorg. Met.-Org. Chem., 37, 35 (2007); https://doi.org/10.1080/15533170601172427.
M. Amirnasr, A.H. Mahmoudkhani, A. Gorji, S. Dehghanpour and H.R. Bijanzadeh, Polyhedron, 21, 2733 (2002); https://doi.org/10.1016/S0277-5387(02)01277-9.
A. Sousa-Pedrares, N. Camiña, J. Romero, M.L. Durán, J.A. GarcíaVázquez and A. Sousa, Pohyhedron, 27, 3391 (2008); https://doi.org/10.1016/j.poly.2008.08.011.
M. del Carmen Fernández-Fernández, R.B. de la Calle, A. Macías, L.V. Matarranz and P. Pérez-Lourido, Polyhedron, 27, 2301 (2008); https://doi.org/10.1016/j.poly.2008.04.043.
M. Tuncel and S. Serin, Transition Met. Chem., 31, 805 (2006); https://doi.org/10.1007/s11243-006-0074-5.
S. Chandra and A. Kumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 68, 1410 (2007); https://doi.org/10.1016/j.saa.2006.12.079.
J.K. Barton, A.T. Danishefsky and J.M. Goldberg, J. Am. Chem. Soc., 106, 2172 (1984); https://doi.org/10.1021/ja00319a043.
M. Shebl, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 127 (2014); https://doi.org/10.1016/j.saa.2013.07.107.
V. Uma, M. Kanthimathi, T. Weyhermuller and B.U. Nair, J. Inorg. Biochem., 99, 2299 (2005); https://doi.org/10.1016/j.jinorgbio.2005.08.011.
S. Anbu and M. Kandaswamy, Polyhedron, 30, 123 (2011); https://doi.org/10.1016/j.poly.2010.09.041.
S.O. Bahaffi, A.A. Abdel Aziz and M.M. El-Naggar, J. Mol. Struct., 1020, 188 (2012); https://doi.org/10.1016/j.molstruc.2012.04.017.
J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973); https://doi.org/10.1021/bi00745a020.
H. Chao, W.-J. Mei, Q.-W. Huang and L.-N. Ji, J. Inorg. Biochem., 92, 165 (2002); https://doi.org/10.1016/S0162-0134(02)00543-3.
S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 31, 9319 (1992); https://doi.org/10.1021/bi00154a001.
S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 32, 2573 (1993); https://doi.org/10.1021/bi00061a015.