Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Evaluation of Adsorption Capacity of Prosopis juliflora Seed Powder for Removal of Trace Elements from Aqueous Solution
Corresponding Author(s) : V. Sangu
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
In this present study Prosopsis juliflora seed powder has been tried out as an economically efficient adsorbent to remove Cd(II), Cu(II) and Zn(II) from aqueous solution. FTIR analysis of compounds present in Prosopsis juliflora seed powder have -OH, C-N str, C=O, -NH alike functional groups. These functional group were responsible for binding of heavy metal in wastewater on Prosopsis juliflora seed powder. SEM morphological study shows Prosopsis juliflora seed powder poses rough surface. Hence, heavy metals in wastewater are easily absorbed on the surface of the seed powder. The influence of various process parameters such as solution pH, sorbent dose and contact time on the removal process for removing Zn, Cu and Cd from wastewater were investigated by batch mode of operation. The percentage removal of Cd(II), Cu(II) and Zn(II) were found to be 88, 90 and 85 % at optimum pH and contact time and sorbent dosage. Freundlich and Langmuir adsorption isotherm were drawn for varying initial concentration of Cd(II), Cu(II) and Zn(II) ions. Straight-line nature of the plots indicated that the adsorption process follow both isotherm model. The adsorption capacity (Q0) values for the removal of Cd(II), Cu(II) and Zn(II) were found to be 52.63, 43.47 and 35.71 mg/g, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O.B. Akpor, G.O. Ohiobor and T.D. Olaolu, Adv. Biosci. Bioeng., 2, 37 (2014); https://doi.org/10.11648/j.abb.20140204.11.
- K.S. Bharathi and S.T. Ramesh, Appl. Water Sci., 3, 773 (2013); https://doi.org/10.1007/s13201-013-0117-y.
- A.M. And and I. Alli, J. Sci. Agric., 44, 99 (1988); https://doi.org/10.1002/jsfa.2740440202.
- A. Dubey and S. Shiwani, Int. J. Environ. Sci. Technol., 9, 15 (2012); https://doi.org/10.1007/s13762-011-0012-8.
- S.N.M. Yusoff, A. Kamari, W.P. Putra, C.F. Ishak, A. Mohamed, N. Hashim and I.M. Isa, J. Environ. Prot., 5, 289 (2014); https://doi.org/10.4236/jep.2014.54032.
- V. Sangu and K. Kannan, Indian J. Chem. Technol., 24, 644 (2017).
- J. Salehzadeh, Leonardo J. Sci., 23, 97 (2013).
- V. Sangu, K. Kannan and K. Srinivasan, Asian J. Chem., 26, 6131 (2014); https://doi.org/10.14233/ajchem.2014.16845.
- N. Suganthi and K. Srinivasan, Indian J. Eng. Mater. Sci., 17, 382 (2010).
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
- G. McKay, H.S. Blair and J.R. Gardner, J. Appl. Polym. Sci., 27, 3043 (1982); https://doi.org/10.1002/app.1982.070270827.
- M.B. Desta, J. Thermodyn., 2013, 1 (2013); https://doi.org/10.1155/2013/375830.
- K.R. Hall, L.C. Eagleton, A. Acrivos and T. Vermeulen, Ind. Eng. Chem. Fundam., 5, 212 (1966); https://doi.org/10.1021/i160018a011.
- I.W. Maina, V. Obuseng and F. Nareetsile, J. Chem., 2016, 1 (2016); https://doi.org/10.1155/2016/9312952.
- M. Shaikh, Int. J. Interdisc. Innov. Res. Develop., 4, 55 (2017).
- N.A.A. Aziz, N. Jayasuriya and L. Fan, IOP Conf. Series: Mater. Sci. Eng., 136, 12044 (2016); https://doi.org/10.1088/1757-899X/136/1/012044.
- A. Saeed, M. Iqbal and M.W. Akhtar, J. Hazard. Mater., 117, 65 (2005); https://doi.org/10.1016/j.jhazmat.2004.09.008.
- D.S. Malik, C.K. Jain and A.K. Yadav, Appl. Water Sci., 7, 2113 (2017); https://doi.org/10.1007/s13201-016-0401-8.
- G. Sun and W. Shi, Ind. Eng. Chem. Res., 37, 1324 (1998); https://doi.org/10.1021/ie970468j.
References
O.B. Akpor, G.O. Ohiobor and T.D. Olaolu, Adv. Biosci. Bioeng., 2, 37 (2014); https://doi.org/10.11648/j.abb.20140204.11.
K.S. Bharathi and S.T. Ramesh, Appl. Water Sci., 3, 773 (2013); https://doi.org/10.1007/s13201-013-0117-y.
A.M. And and I. Alli, J. Sci. Agric., 44, 99 (1988); https://doi.org/10.1002/jsfa.2740440202.
A. Dubey and S. Shiwani, Int. J. Environ. Sci. Technol., 9, 15 (2012); https://doi.org/10.1007/s13762-011-0012-8.
S.N.M. Yusoff, A. Kamari, W.P. Putra, C.F. Ishak, A. Mohamed, N. Hashim and I.M. Isa, J. Environ. Prot., 5, 289 (2014); https://doi.org/10.4236/jep.2014.54032.
V. Sangu and K. Kannan, Indian J. Chem. Technol., 24, 644 (2017).
J. Salehzadeh, Leonardo J. Sci., 23, 97 (2013).
V. Sangu, K. Kannan and K. Srinivasan, Asian J. Chem., 26, 6131 (2014); https://doi.org/10.14233/ajchem.2014.16845.
N. Suganthi and K. Srinivasan, Indian J. Eng. Mater. Sci., 17, 382 (2010).
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
G. McKay, H.S. Blair and J.R. Gardner, J. Appl. Polym. Sci., 27, 3043 (1982); https://doi.org/10.1002/app.1982.070270827.
M.B. Desta, J. Thermodyn., 2013, 1 (2013); https://doi.org/10.1155/2013/375830.
K.R. Hall, L.C. Eagleton, A. Acrivos and T. Vermeulen, Ind. Eng. Chem. Fundam., 5, 212 (1966); https://doi.org/10.1021/i160018a011.
I.W. Maina, V. Obuseng and F. Nareetsile, J. Chem., 2016, 1 (2016); https://doi.org/10.1155/2016/9312952.
M. Shaikh, Int. J. Interdisc. Innov. Res. Develop., 4, 55 (2017).
N.A.A. Aziz, N. Jayasuriya and L. Fan, IOP Conf. Series: Mater. Sci. Eng., 136, 12044 (2016); https://doi.org/10.1088/1757-899X/136/1/012044.
A. Saeed, M. Iqbal and M.W. Akhtar, J. Hazard. Mater., 117, 65 (2005); https://doi.org/10.1016/j.jhazmat.2004.09.008.
D.S. Malik, C.K. Jain and A.K. Yadav, Appl. Water Sci., 7, 2113 (2017); https://doi.org/10.1007/s13201-016-0401-8.
G. Sun and W. Shi, Ind. Eng. Chem. Res., 37, 1324 (1998); https://doi.org/10.1021/ie970468j.