Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Dynamics Simulation Study of Colloidal Suspensions under Confinement
Corresponding Author(s) : R.N. Behera
Asian Journal of Chemistry,
Vol. 30 No. 11 (2018): Vol 30 Issue 11
Abstract
The density profiles and self-diffusion coefficients of model colloidal suspensions confined between two parallel walls have been studied using classical molecular dynamics simulation. The colloidal suspensions are modeled as asymmetric mixture of spherical particles interacting via Weeks-Chandler-Andersen (WCA) and Coulomb potential. Both the charged as well as neutral walls are considered. Systematic variations in density profiles as well as the self-diffusion coefficients are found with the size and charge of the colloid and with the kind of walls.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet, Wiley-VCH, edn 2 (1999).
- N. Geerts and E. Eiser, Soft Matter, 6, 4647 (2010); https://doi.org/10.1039/c001603a.
- E. Dickinson, Annu. Rev. Food Sci. Technol., 6, 211 (2015); https://doi.org/10.1146/annurev-food-022814-015651.
- R. Jurgons, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach and C. Alexiou, J. Phys. Condens. Matter, 18, S2893 (2006); https://doi.org/10.1088/0953-8984/18/38/S24.
- L. Belloni, J. Phys. Condens. Matter, 12, R549 (2000); https://doi.org/10.1088/0953-8984/12/46/201.
- C.N. Likos, Phys. Rep., 348, 267 (2001); https://doi.org/10.1016/S0370-1573(00)00141-1.
- H. Lowen, J. Phys. Condens. Matter, 13, R415 (2001); https://doi.org/10.1088/0953-8984/13/24/201.
- W. Poon, Science, 304, 830 (2004); https://doi.org/10.1126/science.1097964.
- J. Klafter and J.M. Drake, Molecular Dynamics in Restricted Geometries, Wiley: New York (1989).
- P. Pieranski, L. Strzelecki and B. Pansu, Phys. Rev. Lett., 50, 900 (1983); https://doi.org/10.1103/PhysRevLett.50.900.
- D.H. Van Winkle and C.A. Murray, Phys. Rev. A, 34, 562 (1986); https://doi.org/10.1103/PhysRevA.34.562.
- J. Weiss, D.W. Oxtoby, D.G. Grier and C.A. Murray, J. Chem. Phys., 103, 1180 (1995); https://doi.org/10.1063/1.469828.
- E. Chang and D. Hone, Europhys. Lett., 5, 635 (1988); https://doi.org/10.1209/0295-5075/5/7/011.
- E. Allahyarov, I. D’Amico and H. Lowen, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 60, 3199 (1999); https://doi.org/10.1103/PhysRevE.60.3199.
- C. Stubenrauch and R.V. Klitzing, J. Phys. Condens. Matter, 15, R1197 (2003); https://doi.org/10.1088/0953-8984/15/27/201.
- W.A. Ducker, T.J. Senden and R.M. Pashley, Nature, 353, 239 (1991); https://doi.org/10.1038/353239a0.
- J.N. Israelachvili and R.M. Pashley, Nature, 306, 249 (1983); https://doi.org/10.1038/306249a0.
- S.H.L. Klapp, D. Qu and R. v. Klitzing, J. Phys. Chem. B, 111, 1296 (2007); https://doi.org/10.1021/jp065982u.
- Y. Zeng, S. Grandner, C.L.P. Oliveira, A.F. Thu¨nemann, O. Paris, J.S. Pedersen, S.H.L. Klapp and R. von Klitzing, Soft Matter, 7, 10899 (2011); https://doi.org/10.1039/c1sm05971h.
- H.H. von Gru¨nberg, L. Helden, P. Leiderer and C. Bechinger, J. Chem. Phys., 114, 10094 (2001); https://doi.org/10.1063/1.1371556.
- B. Pouligny, D.J.W. Aastuen and N.A. Clark, Phys. Rev. A, 44, 6616 (1991); https://doi.org/10.1103/PhysRevA.44.6616.
- D.G. Grier and Y. Han, J. Phys. Condens. Matter, 16, S4145 (2004); https://doi.org/10.1088/0953-8984/16/38/028.
- T. Fehr and H. Lowen, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 52, 4016 (1995); https://doi.org/10.1103/PhysRevE.52.4016.
- C.R. Nugent, K.V. Edmond, H.N. Patel and E.R. Weeks, Phys. Rev. Lett., 99, 025702 (2007); https://doi.org/10.1103/PhysRevLett.99.025702.
- S. Singh, J. Houston, F. van Swol and C.J. Brinker, Nature, 442, 526 (2006); https://doi.org/10.1038/442526a.
- O.A. Vasiley, S. Dietrich and S. Kondrat, Soft Matter, 14, 586 (2017); https://doi.org/10.1039/C7SM01363A.
- J. Bleibel, A. Dominguez and M. Oettel, Phys. Rev. E, 95, 032604 (2017); https://doi.org/10.1103/PhysRevE.95.032604.
- G. Wu, H. Cho, D.A. Wood, A.D. Dinsmore and S. Yang, J. Am. Chem. Soc., 139, 5095 (2017); https://doi.org/10.1021/jacs.6b12975.
- H. Lowen, J. Phys. Condens. Matter, 21, 474203 (2009); https://doi.org/10.1088/0953-8984/21/47/474203.
- K. Nygard, Phys. Chem. Chem. Phys., 19, 23632 (2017); https://doi.org/10.1039/C7CP02497E.
- R. Bhadauria and N.R. Aluru, J. Chem. Phys., 145, 074115 (2016); https://doi.org/10.1063/1.4961226.
- U.M. Bettolo Marconi, P. Malgaretti and I. Pagonabarraga, J. Chem. Phys., 143, 184501 (2015); https://doi.org/10.1063/1.4934994.
- S.T. Cui, J. Chem. Phys., 123, 054706 (2005); https://doi.org/10.1063/1.1989314.
- R. Devi, S. Srivastava and K. Tankeshwar, Phys. Chem. Liq., 52, 636 (2014); https://doi.org/10.1080/00319104.2014.904860.
- P.K. Yuet, Langmuir, 22, 2979 (2006); https://doi.org/10.1021/la052736l.
- C. Aponte-Rivera, Y. Su and R.N. Zia, J. Fluid Mech., 836, 413 (2018); https://doi.org/10.1017/jfm.2017.801.
- J. Alejandre, M. Lozada-Cassou, E. González-Tovar and G.A. Chapela, Chem. Phys. Lett., 175, 111 (1990); https://doi.org/10.1016/0009-2614(90)85527-J.
- A. Einstein, Investigation on the theory of Brownian Movement, Dover: New York (1926).
- P.H. Hünenberger, Adv. Polym. Sci., 173, 105 (2005); https://doi.org/10.1007/b99427.
- M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press: New York (1991).
- H.J. Limbach, A. Arnold, B.A. Mann and C. Holm, Comput. Phys. Commun., 174, 704 (2006); https://doi.org/10.1016/j.cpc.2005.10.005.
- A. Arnold and C. Holm, Comput. Phys. Commun., 148, 327 (2002); https://doi.org/10.1016/S0010-4655(02)00586-6.
- U.K. Padidela, T. Khanna and R.N. Behera, Phys. Chem. Liq., 56, 685 (2018); https://doi.org/10.1080/00319104.2017.1407932.
References
D.F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet, Wiley-VCH, edn 2 (1999).
N. Geerts and E. Eiser, Soft Matter, 6, 4647 (2010); https://doi.org/10.1039/c001603a.
E. Dickinson, Annu. Rev. Food Sci. Technol., 6, 211 (2015); https://doi.org/10.1146/annurev-food-022814-015651.
R. Jurgons, C. Seliger, A. Hilpert, L. Trahms, S. Odenbach and C. Alexiou, J. Phys. Condens. Matter, 18, S2893 (2006); https://doi.org/10.1088/0953-8984/18/38/S24.
L. Belloni, J. Phys. Condens. Matter, 12, R549 (2000); https://doi.org/10.1088/0953-8984/12/46/201.
C.N. Likos, Phys. Rep., 348, 267 (2001); https://doi.org/10.1016/S0370-1573(00)00141-1.
H. Lowen, J. Phys. Condens. Matter, 13, R415 (2001); https://doi.org/10.1088/0953-8984/13/24/201.
W. Poon, Science, 304, 830 (2004); https://doi.org/10.1126/science.1097964.
J. Klafter and J.M. Drake, Molecular Dynamics in Restricted Geometries, Wiley: New York (1989).
P. Pieranski, L. Strzelecki and B. Pansu, Phys. Rev. Lett., 50, 900 (1983); https://doi.org/10.1103/PhysRevLett.50.900.
D.H. Van Winkle and C.A. Murray, Phys. Rev. A, 34, 562 (1986); https://doi.org/10.1103/PhysRevA.34.562.
J. Weiss, D.W. Oxtoby, D.G. Grier and C.A. Murray, J. Chem. Phys., 103, 1180 (1995); https://doi.org/10.1063/1.469828.
E. Chang and D. Hone, Europhys. Lett., 5, 635 (1988); https://doi.org/10.1209/0295-5075/5/7/011.
E. Allahyarov, I. D’Amico and H. Lowen, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 60, 3199 (1999); https://doi.org/10.1103/PhysRevE.60.3199.
C. Stubenrauch and R.V. Klitzing, J. Phys. Condens. Matter, 15, R1197 (2003); https://doi.org/10.1088/0953-8984/15/27/201.
W.A. Ducker, T.J. Senden and R.M. Pashley, Nature, 353, 239 (1991); https://doi.org/10.1038/353239a0.
J.N. Israelachvili and R.M. Pashley, Nature, 306, 249 (1983); https://doi.org/10.1038/306249a0.
S.H.L. Klapp, D. Qu and R. v. Klitzing, J. Phys. Chem. B, 111, 1296 (2007); https://doi.org/10.1021/jp065982u.
Y. Zeng, S. Grandner, C.L.P. Oliveira, A.F. Thu¨nemann, O. Paris, J.S. Pedersen, S.H.L. Klapp and R. von Klitzing, Soft Matter, 7, 10899 (2011); https://doi.org/10.1039/c1sm05971h.
H.H. von Gru¨nberg, L. Helden, P. Leiderer and C. Bechinger, J. Chem. Phys., 114, 10094 (2001); https://doi.org/10.1063/1.1371556.
B. Pouligny, D.J.W. Aastuen and N.A. Clark, Phys. Rev. A, 44, 6616 (1991); https://doi.org/10.1103/PhysRevA.44.6616.
D.G. Grier and Y. Han, J. Phys. Condens. Matter, 16, S4145 (2004); https://doi.org/10.1088/0953-8984/16/38/028.
T. Fehr and H. Lowen, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 52, 4016 (1995); https://doi.org/10.1103/PhysRevE.52.4016.
C.R. Nugent, K.V. Edmond, H.N. Patel and E.R. Weeks, Phys. Rev. Lett., 99, 025702 (2007); https://doi.org/10.1103/PhysRevLett.99.025702.
S. Singh, J. Houston, F. van Swol and C.J. Brinker, Nature, 442, 526 (2006); https://doi.org/10.1038/442526a.
O.A. Vasiley, S. Dietrich and S. Kondrat, Soft Matter, 14, 586 (2017); https://doi.org/10.1039/C7SM01363A.
J. Bleibel, A. Dominguez and M. Oettel, Phys. Rev. E, 95, 032604 (2017); https://doi.org/10.1103/PhysRevE.95.032604.
G. Wu, H. Cho, D.A. Wood, A.D. Dinsmore and S. Yang, J. Am. Chem. Soc., 139, 5095 (2017); https://doi.org/10.1021/jacs.6b12975.
H. Lowen, J. Phys. Condens. Matter, 21, 474203 (2009); https://doi.org/10.1088/0953-8984/21/47/474203.
K. Nygard, Phys. Chem. Chem. Phys., 19, 23632 (2017); https://doi.org/10.1039/C7CP02497E.
R. Bhadauria and N.R. Aluru, J. Chem. Phys., 145, 074115 (2016); https://doi.org/10.1063/1.4961226.
U.M. Bettolo Marconi, P. Malgaretti and I. Pagonabarraga, J. Chem. Phys., 143, 184501 (2015); https://doi.org/10.1063/1.4934994.
S.T. Cui, J. Chem. Phys., 123, 054706 (2005); https://doi.org/10.1063/1.1989314.
R. Devi, S. Srivastava and K. Tankeshwar, Phys. Chem. Liq., 52, 636 (2014); https://doi.org/10.1080/00319104.2014.904860.
P.K. Yuet, Langmuir, 22, 2979 (2006); https://doi.org/10.1021/la052736l.
C. Aponte-Rivera, Y. Su and R.N. Zia, J. Fluid Mech., 836, 413 (2018); https://doi.org/10.1017/jfm.2017.801.
J. Alejandre, M. Lozada-Cassou, E. González-Tovar and G.A. Chapela, Chem. Phys. Lett., 175, 111 (1990); https://doi.org/10.1016/0009-2614(90)85527-J.
A. Einstein, Investigation on the theory of Brownian Movement, Dover: New York (1926).
P.H. Hünenberger, Adv. Polym. Sci., 173, 105 (2005); https://doi.org/10.1007/b99427.
M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press: New York (1991).
H.J. Limbach, A. Arnold, B.A. Mann and C. Holm, Comput. Phys. Commun., 174, 704 (2006); https://doi.org/10.1016/j.cpc.2005.10.005.
A. Arnold and C. Holm, Comput. Phys. Commun., 148, 327 (2002); https://doi.org/10.1016/S0010-4655(02)00586-6.
U.K. Padidela, T. Khanna and R.N. Behera, Phys. Chem. Liq., 56, 685 (2018); https://doi.org/10.1080/00319104.2017.1407932.