Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Role of Stabilizing Agents on Modifying Size and Morphology of ZnO Nanoparticles Synthesized via Sol-Gel Route
Corresponding Author(s) : S. Gayathri
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
In the present study, the synthesis of ZnO nanoparticles through sol-gel route by using different stabilizing agents namely polyethylene glycol, polyvinyl alcohol and starch have been reported. The particle size calculated from the diffraction pattern of nano ZnO and Al doped ZnO synthesized using starch as stabilizing agent is found to be 19 and 13 nm, respectively. While compared with the other stabilizing agent like poly(vinyl alcohol) and poly(ethylene glycol) that the growth of ZnO nanoparticles size has controlled in starch. In case of poly(vinyl alcohol) and starch stabilized nano ZnO shows the formation of spherical ellipse ZnO nanoparticles without any agglomeration. Size and morphological studies were performed using X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) with energy dispersive X-ray (EDX) analysis and high resolution transmission electron microscope (TEM). The synthesized ZnO possess highly crystalline wurtzite structure. The morphological study clearly reveals that the nano ZnO particle shows spherical eliptical shape.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Jang, J.H. Park and S.G. Oh, J. Ceram. Process. Res., 10, 783 (2009).
- S. Rani, P. Suri, P. Shishodia and R. Mehra, Sol. Energy Mater. Sol. Cells, 92, 1639 (2008); https://doi.org/10.1016/j.solmat.2008.07.015.
- J.-H. Yum, S.-S. Kim, D.-Y. Kim and Y.-E. Sung, J. Photochem. Photobiol. Chem., 173, 1 (2005); https://doi.org/10.1016/j.jphotochem.2004.12.023.
- X.-F. Wang, O. Kitao, E. Hosono, H. Zhou, S. Sasaki and H. Tamiaki, J. Photochem. Photobiol. Chem., 210, 145 (2010); https://doi.org/10.1016/j.jphotochem.2010.01.004.
- L. Dong, M.M. Craig, D. Khang and C. Chen, J. Nanotechnol., Article ID 816184 (2012); https://doi.org/10.1155/2012/816184.
- R. Yousefi, M.R. Muhamad and A.K. Zak, Curr. Appl. Phys., 11, 767 (2011); https://doi.org/10.1016/j.cap.2010.11.061.
- C.L. Kuo, C.L. Wang, H.H. Ko, W.S. Hwang, K.M. Chang, W.L. Li, H.H. Huang, Y.H. Chang and M.C. Wang, Ceram. Int., 36, 693 (2010); https://doi.org/10.1016/j.ceramint.2009.10.011.
- C. Deng, H. Hu, G. Shao and C. Han, Mater. Lett., 64, 852 (2010); https://doi.org/10.1016/j.matlet.2010.01.039.
- R. Zamiri, A. Zakaria, H.A. Ahangar, M. Darroudi, A.K. Zak and G.P.C. Drummen, J. Alloys Compd., 516, 41 (2012); https://doi.org/10.1016/j.jallcom.2011.11.118.
- Z.H. Wang, D.Y. Geng, Z. Han and Z.D. Zhang, Mater. Lett., 63, 2533 (2009); https://doi.org/10.1016/j.matlet.2009.08.044.
- R. Razali, A.K. Zak, W.H.A. Majid and M. Darroudi, Ceram. Int., 37,3657 (2011); https://doi.org/10.1016/j.ceramint.2011.06.026.
- P. Jajarmi, Mater. Lett., 63, 2646 (2009); https://doi.org/10.1016/j.matlet.2009.08.062.
- A.K. Zak, M.E. Abrishami, W.H.A. Majid, R. Yousefi and S.M. Hosseini, Ceram. Int., 37, 393 (2011); https://doi.org/10.1016/j.ceramint.2010.08.017.
- A. Khorsand Zak, W.H. Abd. Majid, M.R. Mahmoudian, M. Darroudi and R. Yousefi, Adv. Powder Technol., 24, 618 (2013); https://doi.org/10.1016/j.apt.2012.11.008.
- B. Cheng and E.T. Samulski, Chem. Commun., 8, 986 (2004); https://doi.org/10.1039/b316435g.
- Y. He, J. Wang, W. Sang, R. Wu, L. Yan and Y. Fang, Acta Chim. Sin., 63, 1037 (2005).
- H.J. Zhai, W.H. Wu, F. Lu, H.S. Wang and C. Wang, Mater. Chem. Phys., 112, 1024 (2008); https://doi.org/10.1016/j.matchemphys.2008.07.020.
- J. Ma, W. Zhu, Y. Tian and Z. Wang, Nanoscale Res. Lett., 11, 200 (2016); https://doi.org/10.1186/s11671-016-1404-y.
- M. Mazaheri, A.M. Zahedi and S.K. Sadrnezhaad, J. Am. Ceram. Soc., 91, 56 (2008); https://doi.org/10.1111/j.1551-2916.2007.02029.x.
- A. Vanaja, G.V. Ramaraju and S. Rao, Indian J. Sci. Technol., 9, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i12/87013.
- J.L. Konne and K. Okpara, Energy Environ. Res., 4, 25 (2014); https://doi.org/10.5539/eer.v4n1p25.
- H. Usui, Y. Shimizu, T. Sasaki and N. Koshizaki, J. Phys. Chem. B, 109, 120 (2005); https://doi.org/10.1021/jp046747j.
References
J.H. Jang, J.H. Park and S.G. Oh, J. Ceram. Process. Res., 10, 783 (2009).
S. Rani, P. Suri, P. Shishodia and R. Mehra, Sol. Energy Mater. Sol. Cells, 92, 1639 (2008); https://doi.org/10.1016/j.solmat.2008.07.015.
J.-H. Yum, S.-S. Kim, D.-Y. Kim and Y.-E. Sung, J. Photochem. Photobiol. Chem., 173, 1 (2005); https://doi.org/10.1016/j.jphotochem.2004.12.023.
X.-F. Wang, O. Kitao, E. Hosono, H. Zhou, S. Sasaki and H. Tamiaki, J. Photochem. Photobiol. Chem., 210, 145 (2010); https://doi.org/10.1016/j.jphotochem.2010.01.004.
L. Dong, M.M. Craig, D. Khang and C. Chen, J. Nanotechnol., Article ID 816184 (2012); https://doi.org/10.1155/2012/816184.
R. Yousefi, M.R. Muhamad and A.K. Zak, Curr. Appl. Phys., 11, 767 (2011); https://doi.org/10.1016/j.cap.2010.11.061.
C.L. Kuo, C.L. Wang, H.H. Ko, W.S. Hwang, K.M. Chang, W.L. Li, H.H. Huang, Y.H. Chang and M.C. Wang, Ceram. Int., 36, 693 (2010); https://doi.org/10.1016/j.ceramint.2009.10.011.
C. Deng, H. Hu, G. Shao and C. Han, Mater. Lett., 64, 852 (2010); https://doi.org/10.1016/j.matlet.2010.01.039.
R. Zamiri, A. Zakaria, H.A. Ahangar, M. Darroudi, A.K. Zak and G.P.C. Drummen, J. Alloys Compd., 516, 41 (2012); https://doi.org/10.1016/j.jallcom.2011.11.118.
Z.H. Wang, D.Y. Geng, Z. Han and Z.D. Zhang, Mater. Lett., 63, 2533 (2009); https://doi.org/10.1016/j.matlet.2009.08.044.
R. Razali, A.K. Zak, W.H.A. Majid and M. Darroudi, Ceram. Int., 37,3657 (2011); https://doi.org/10.1016/j.ceramint.2011.06.026.
P. Jajarmi, Mater. Lett., 63, 2646 (2009); https://doi.org/10.1016/j.matlet.2009.08.062.
A.K. Zak, M.E. Abrishami, W.H.A. Majid, R. Yousefi and S.M. Hosseini, Ceram. Int., 37, 393 (2011); https://doi.org/10.1016/j.ceramint.2010.08.017.
A. Khorsand Zak, W.H. Abd. Majid, M.R. Mahmoudian, M. Darroudi and R. Yousefi, Adv. Powder Technol., 24, 618 (2013); https://doi.org/10.1016/j.apt.2012.11.008.
B. Cheng and E.T. Samulski, Chem. Commun., 8, 986 (2004); https://doi.org/10.1039/b316435g.
Y. He, J. Wang, W. Sang, R. Wu, L. Yan and Y. Fang, Acta Chim. Sin., 63, 1037 (2005).
H.J. Zhai, W.H. Wu, F. Lu, H.S. Wang and C. Wang, Mater. Chem. Phys., 112, 1024 (2008); https://doi.org/10.1016/j.matchemphys.2008.07.020.
J. Ma, W. Zhu, Y. Tian and Z. Wang, Nanoscale Res. Lett., 11, 200 (2016); https://doi.org/10.1186/s11671-016-1404-y.
M. Mazaheri, A.M. Zahedi and S.K. Sadrnezhaad, J. Am. Ceram. Soc., 91, 56 (2008); https://doi.org/10.1111/j.1551-2916.2007.02029.x.
A. Vanaja, G.V. Ramaraju and S. Rao, Indian J. Sci. Technol., 9, 1 (2016); https://doi.org/10.17485/ijst/2016/v9i12/87013.
J.L. Konne and K. Okpara, Energy Environ. Res., 4, 25 (2014); https://doi.org/10.5539/eer.v4n1p25.
H. Usui, Y. Shimizu, T. Sasaki and N. Koshizaki, J. Phys. Chem. B, 109, 120 (2005); https://doi.org/10.1021/jp046747j.