Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Magnetic Properties of Nanocomposite Pb2MnO4 and PbO: A New Metal-Organic Complex
Corresponding Author(s) : Z. Razmara
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
A new paramagnetic nanocomposite of Pb2MnO4 and PbO was synthesized by thermal decomposition of new metal-organic complex formulated as [Mn(H2O)6][Pb(dipic)2]·2H2O (1) (dipic = pyridine-2,6-dicarboxylic acid). The complex was characterized by atomic absorption, conductivity measurement, elemental analysis, Fourier transform infrared spectroscopy and ultra violet-visible spectroscopy. Thermal behaviour of complex 1 was studied by thermogravimetric analysis and differential scanning calorimetry. The complex 1 used as a precursor for preparation paramagnetic nanoparticles of Pb2MnO4 and PbO by thermal decomposition method at 600 ºC. These nanoparticles were characterized by FT-IR and X-ray diffraction and scanning electron microscopy. The magnetic behaviour of nanoparticles was studied using vibration sample magnetometer at room temperature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.-C. Chen, C.-W. Wang, Y.-I. Lee and H.-G. Liu, Colloids Surf. A: Physicochem. Eng. Asp., 373, 124 (2011); https://doi.org/10.1016/j.colsurfa.2010.10.035.
- L.R. Hirsch, R.J. Stafford, J. Bankson, S.R. Sershen, B. Rivera, R. Price, J.D. Hazle, N.J. Halas and J.L. West, Proc. Natl. Acad. Sci. USA, 100, 13549 (2003); https://doi.org/10.1073/pnas.2232479100.
- R. Gyawali, S.A. Ibrahim, S.H. Abu Hasfa, S.Q. Smqadri and Y. Haik, J. Pathogens, Article ID 650968 (2011); https://doi.org/10.4061/2011/650968.
- A.B. Chin and I.I. Yaacob, J. Mater. Process. Technol., 191, 235 (2007); https://doi.org/10.1016/j.jmatprotec.2007.03.011.
- C. Albornoz and S.E. Jacobo, J. Magn. Magn. Mater., 305, 12 (2006); https://doi.org/10.1016/j.jmmm.2005.11.021.
- E.H. Kim, H.S. Lee, B.K. Kwak and B.-K. Kim, J. Magn. Magn. Mater., 289, 328 (2005); https://doi.org/10.1016/j.jmmm.2004.11.093.
- J. Wan, X. Chen, Z. Wang, X. Yang and Y. Qian, J. Cryst. Growth, 276, 571 (2005); https://doi.org/10.1016/j.jcrysgro.2004.11.423.
- M. Kimata, D. Nakagawa and M. Hasegawa, Powder Technol., 132, 112 (2003); https://doi.org/10.1016/S0032-5910(03)00046-9.
- E. Casbeer, V.K. Sharma and X.-Z. Li, Sep. Purif. Technol., 87, 1 (2012); https://doi.org/10.1016/j.seppur.2011.11.034.
- P.A. Mangrulkar, V. Polshettiwar, N.K. Labhsetwar, R.S. Varma and S.S. Rayalu, Nanoscale, 4, 5202 (2012); https://doi.org/10.1039/c2nr30819c.
- S.B. Han, T.B. Kang, O.S. Joo and K.D. Jung, Sol. Energy, 81, 623 (2007); https://doi.org/10.1016/j.solener.2006.08.012.
- Q.A. Pankhurst, J. Connolly, S. Jones and J. Dobson, J. Phys. D:Appl. Phys., 36, R167 (2003); https://doi.org/10.1088/0022-3727/36/13/201.
- K.M. Krishnan, IEEE Trans. Magn., 46, 2523 (2010); https://doi.org/10.1109/TMAG.2010.2046907.
- C. Plank, D. Vlaskou, U. Schillinger and O. Mykhaylyk, Ther. Deliv., 2, 717 (2011); https://doi.org/10.4155/tde.11.37.
- J. Xie, J. Huang, X. Li, S. Sun and X. Chen, Curr. Med. Chem., 16, 1278 (2009); https://doi.org/10.2174/092986709787846604.
- F. Gazeau, M. Lévy and C. Wilhelm, Nanomdicine, 3, 831 (2008); https://doi.org/10.2217/17435889.3.6.831.
- P. Reimer and T. Balzer, Eur. Radiol., 13, 1266 (2003); https://doi.org/10.1007/s00330-002-1721-7.
- S. Saheli, A.R. Rezvani and A. Malekzadeh, J. Mol. Struct., 1144, 166 (2017); https://doi.org/10.1016/j.molstruc.2017.05.027.
- S. Saheli, A.R. Rezvani, A. Malekzadeh, M. Dusek and V. Eigner, Int. J. Hydrogen Energy, 43, 685 (2018); https://doi.org/10.1016/j.ijhydene.2017.11.019.
- M.V. Kirillova, M.F.C. Guedes da Silva, A.M. Kirillov, J.J.R. Fraústo da Silva and A.J.L. Pombeiro, Inorg. Chim. Acta, 360, 506 (2007); https://doi.org/10.1016/j.ica.2006.07.087.
- M. Devereux, M. McCann, V. Leon, V. McKee and R.J. Ball, Polyhedron, 21, 1063 (2002); https://doi.org/10.1016/S0277-5387(02)00842-2.
- H. Park, A.J. Lough, J.C. Kim, M.H. Jeong and Y.S. Kang, Inorg. Chim. Acta, 360, 2819 (2007); https://doi.org/10.1016/j.ica.2006.12.047.
- C. Yenikaya, M. Poyraz, M. Sari, F. Demirci, H. Ilkimen and O. Büyükgüngör, Polyhedron, 28, 3526 (2009); https://doi.org/10.1016/j.poly.2009.05.079.
- B.S. Parajón-Costa, O.E. Piro, R. Pis-Diez, E.E. Castellano and A.C. González-Baró, Polyhedron, 25, 2920 (2006); https://doi.org/10.1016/j.poly.2006.04.017.
References
K.-C. Chen, C.-W. Wang, Y.-I. Lee and H.-G. Liu, Colloids Surf. A: Physicochem. Eng. Asp., 373, 124 (2011); https://doi.org/10.1016/j.colsurfa.2010.10.035.
L.R. Hirsch, R.J. Stafford, J. Bankson, S.R. Sershen, B. Rivera, R. Price, J.D. Hazle, N.J. Halas and J.L. West, Proc. Natl. Acad. Sci. USA, 100, 13549 (2003); https://doi.org/10.1073/pnas.2232479100.
R. Gyawali, S.A. Ibrahim, S.H. Abu Hasfa, S.Q. Smqadri and Y. Haik, J. Pathogens, Article ID 650968 (2011); https://doi.org/10.4061/2011/650968.
A.B. Chin and I.I. Yaacob, J. Mater. Process. Technol., 191, 235 (2007); https://doi.org/10.1016/j.jmatprotec.2007.03.011.
C. Albornoz and S.E. Jacobo, J. Magn. Magn. Mater., 305, 12 (2006); https://doi.org/10.1016/j.jmmm.2005.11.021.
E.H. Kim, H.S. Lee, B.K. Kwak and B.-K. Kim, J. Magn. Magn. Mater., 289, 328 (2005); https://doi.org/10.1016/j.jmmm.2004.11.093.
J. Wan, X. Chen, Z. Wang, X. Yang and Y. Qian, J. Cryst. Growth, 276, 571 (2005); https://doi.org/10.1016/j.jcrysgro.2004.11.423.
M. Kimata, D. Nakagawa and M. Hasegawa, Powder Technol., 132, 112 (2003); https://doi.org/10.1016/S0032-5910(03)00046-9.
E. Casbeer, V.K. Sharma and X.-Z. Li, Sep. Purif. Technol., 87, 1 (2012); https://doi.org/10.1016/j.seppur.2011.11.034.
P.A. Mangrulkar, V. Polshettiwar, N.K. Labhsetwar, R.S. Varma and S.S. Rayalu, Nanoscale, 4, 5202 (2012); https://doi.org/10.1039/c2nr30819c.
S.B. Han, T.B. Kang, O.S. Joo and K.D. Jung, Sol. Energy, 81, 623 (2007); https://doi.org/10.1016/j.solener.2006.08.012.
Q.A. Pankhurst, J. Connolly, S. Jones and J. Dobson, J. Phys. D:Appl. Phys., 36, R167 (2003); https://doi.org/10.1088/0022-3727/36/13/201.
K.M. Krishnan, IEEE Trans. Magn., 46, 2523 (2010); https://doi.org/10.1109/TMAG.2010.2046907.
C. Plank, D. Vlaskou, U. Schillinger and O. Mykhaylyk, Ther. Deliv., 2, 717 (2011); https://doi.org/10.4155/tde.11.37.
J. Xie, J. Huang, X. Li, S. Sun and X. Chen, Curr. Med. Chem., 16, 1278 (2009); https://doi.org/10.2174/092986709787846604.
F. Gazeau, M. Lévy and C. Wilhelm, Nanomdicine, 3, 831 (2008); https://doi.org/10.2217/17435889.3.6.831.
P. Reimer and T. Balzer, Eur. Radiol., 13, 1266 (2003); https://doi.org/10.1007/s00330-002-1721-7.
S. Saheli, A.R. Rezvani and A. Malekzadeh, J. Mol. Struct., 1144, 166 (2017); https://doi.org/10.1016/j.molstruc.2017.05.027.
S. Saheli, A.R. Rezvani, A. Malekzadeh, M. Dusek and V. Eigner, Int. J. Hydrogen Energy, 43, 685 (2018); https://doi.org/10.1016/j.ijhydene.2017.11.019.
M.V. Kirillova, M.F.C. Guedes da Silva, A.M. Kirillov, J.J.R. Fraústo da Silva and A.J.L. Pombeiro, Inorg. Chim. Acta, 360, 506 (2007); https://doi.org/10.1016/j.ica.2006.07.087.
M. Devereux, M. McCann, V. Leon, V. McKee and R.J. Ball, Polyhedron, 21, 1063 (2002); https://doi.org/10.1016/S0277-5387(02)00842-2.
H. Park, A.J. Lough, J.C. Kim, M.H. Jeong and Y.S. Kang, Inorg. Chim. Acta, 360, 2819 (2007); https://doi.org/10.1016/j.ica.2006.12.047.
C. Yenikaya, M. Poyraz, M. Sari, F. Demirci, H. Ilkimen and O. Büyükgüngör, Polyhedron, 28, 3526 (2009); https://doi.org/10.1016/j.poly.2009.05.079.
B.S. Parajón-Costa, O.E. Piro, R. Pis-Diez, E.E. Castellano and A.C. González-Baró, Polyhedron, 25, 2920 (2006); https://doi.org/10.1016/j.poly.2006.04.017.