Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Simulation of Structure, Molecular Orbitals, Electron Density and Reactivity Aspects of Rubber Vulcanization Accelerator 2-Mercaptobenzothiazole by Density Functional Theory
Corresponding Author(s) : V. Arjunan
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
In this study, insights on the charge transfer and reactivity properties of 2-mercaptobenzothiazole are presented. The structural parameters are determined by B3LYP method. Delocalization of the lone pair electrons of S3 towards N1=C2 is possible and thereby decreases in force constant and increase in C2–S3 bond length than C2–S14. The C8–C9 bond distance increases due to the electron withdrawing nature of nitrogen. Negative electrostatic potentials reside on nitrogen whereas positive electrostatic potentials lie on hydrogen in S–H group. The LUMO–HOMO energy gap determines the charge transfer capacity and is equal to 5.1370 eV. The nS ® p*NC interaction between the sulphur (S3) lone pair and the N1=C2 antibonding orbital gives strong stabilization by 26.70 kcal mol–1. The nS ® p*NC interaction between the sulphur (S14) lone pair and the N1=C2 antibonding orbital gives stabilization by 23.77 kcal mol–1. The atoms C2, C8 and C9 are most prone to nucleophilic attack while the electrophilic attack on C2, C4 and C8 atoms. The C2, C4, C8 and C9 are more susceptible to free radical attack. The high first–order polarizability tensor reveals inductive interactions and second order polarizability tensors characterize the electron acceptor properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.B. Sullivan, C.J. Hann and G.H. Kuhls, Rubber Chem. Technol., 65, 488 (1992); https://doi.org/10.5254/1.3538626.
- M.R. Krejsa and J.L. Koenig, Rubber Chem. Technol., 66, 376 (1993); https://doi.org/10.5254/1.3538317.
- M.H.S. Gradwell and W.J. McGill, J. Appl. Polym. Sci., 58, 2193 (1995); https://doi.org/10.1002/app.1995.070581206.
- S. Bhoumick and S. Banerjee, Rubber Chem. Technol., 47, 251 (1974); https://doi.org/10.5254/1.3540435.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, 2262 Vijayan et al. Asian J. Chem. C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
- H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); https://doi.org/10.1002/jcc.540030212.
- P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
- A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
- J.S. Murray and K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam (1996).
- C. Chidangil, M.K. Shukla and P.C. Mishra, Mol. Model. Annual, 4, 250 (1998); https://doi.org/10.1007/s008940050082.
- R.I. Dennington, T. Keith and J. Millam, GaussView, Version 5.0.8, Semichem. Inc., Shawnee Mission, KS (2008).
- A.E. Reed and F. Weinhold, J. Chem. Phys., 83, 1736 (1985); https://doi.org/10.1063/1.449360.
- A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); https://doi.org/10.1063/1.449486.
- A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); https://doi.org/10.1063/1.445134.
- J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); https://doi.org/10.1021/ja00544a007.
- R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036.
- W. Yang and R.G. Parr, Proc. Natl. Acad. Sci. USA, 82, 6723 (1985); https://doi.org/10.1073/pnas.82.20.6723.
- P.L. Polavarapu, J. Phys. Chem., 94, 8106 (1990); https://doi.org/10.1021/j100384a024.
- M.F.C. Ladd and R.A. Palmer, Structure Determination by X-Ray Crystallography, Kluwer Academic/Plenum Publishers, N.Y., edn 4 (2003).
- R. Franke, Theoretical Drug Design Methods, Elsevier: Amsterdam, pp 115–123 (1984).
- K. Fukui, Theory of Orientation and Stereoselection; Springer-Verlag: New York, pp 34–39 (1975).
- D.F.V. Lewis, C. Ioannides and D.V. Parke, Xenobiotica, 24, 401 (1994); https://doi.org/10.3109/00498259409043243.
- Z. Zhou and R.G. Parr, J. Am. Chem. Soc., 112, 5720 (1990); https://doi.org/10.1021/ja00171a007.
- R.G. Pearson, J. Org. Chem., 54, 1423 (1989); https://doi.org/10.1021/jo00267a034.
- R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).
- A. Cammarata, J. Med. Chem., 10, 525 (1967); https://doi.org/10.1021/jm00316a004.
- A. Leo, C. Hansch and C. Church, J. Med. Chem., 12, 766 (1969); https://doi.org/10.1021/jm00305a010.
- R.G. Pearson, Chemical Hardness-Applications from Molecules to Solids, VCH Wiley, Weinheim (1997).
- P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); https://doi.org/10.1021/cr990029p.
- D.F.V. Lewis, J. Comput. Chem., 8, 1084 (1987); https://doi.org/10.1002/jcc.540080803.
- J. Grunenberg and R. Herges, J. Chem. Inf. Comput. Sci., 35, 905 (1995); https://doi.org/10.1021/ci00027a018.
References
A.B. Sullivan, C.J. Hann and G.H. Kuhls, Rubber Chem. Technol., 65, 488 (1992); https://doi.org/10.5254/1.3538626.
M.R. Krejsa and J.L. Koenig, Rubber Chem. Technol., 66, 376 (1993); https://doi.org/10.5254/1.3538317.
M.H.S. Gradwell and W.J. McGill, J. Appl. Polym. Sci., 58, 2193 (1995); https://doi.org/10.1002/app.1995.070581206.
S. Bhoumick and S. Banerjee, Rubber Chem. Technol., 47, 251 (1974); https://doi.org/10.5254/1.3540435.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, 2262 Vijayan et al. Asian J. Chem. C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
H.B. Schlegel, J. Comput. Chem., 3, 214 (1982); https://doi.org/10.1002/jcc.540030212.
P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
A.D. Becke, Phys. Rev. A, 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098.
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
J.S. Murray and K. Sen, Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam (1996).
C. Chidangil, M.K. Shukla and P.C. Mishra, Mol. Model. Annual, 4, 250 (1998); https://doi.org/10.1007/s008940050082.
R.I. Dennington, T. Keith and J. Millam, GaussView, Version 5.0.8, Semichem. Inc., Shawnee Mission, KS (2008).
A.E. Reed and F. Weinhold, J. Chem. Phys., 83, 1736 (1985); https://doi.org/10.1063/1.449360.
A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); https://doi.org/10.1063/1.449486.
A.E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); https://doi.org/10.1063/1.445134.
J.P. Foster and F. Weinhold, J. Am. Chem. Soc., 102, 7211 (1980); https://doi.org/10.1021/ja00544a007.
R.G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984); https://doi.org/10.1021/ja00326a036.
W. Yang and R.G. Parr, Proc. Natl. Acad. Sci. USA, 82, 6723 (1985); https://doi.org/10.1073/pnas.82.20.6723.
P.L. Polavarapu, J. Phys. Chem., 94, 8106 (1990); https://doi.org/10.1021/j100384a024.
M.F.C. Ladd and R.A. Palmer, Structure Determination by X-Ray Crystallography, Kluwer Academic/Plenum Publishers, N.Y., edn 4 (2003).
R. Franke, Theoretical Drug Design Methods, Elsevier: Amsterdam, pp 115–123 (1984).
K. Fukui, Theory of Orientation and Stereoselection; Springer-Verlag: New York, pp 34–39 (1975).
D.F.V. Lewis, C. Ioannides and D.V. Parke, Xenobiotica, 24, 401 (1994); https://doi.org/10.3109/00498259409043243.
Z. Zhou and R.G. Parr, J. Am. Chem. Soc., 112, 5720 (1990); https://doi.org/10.1021/ja00171a007.
R.G. Pearson, J. Org. Chem., 54, 1423 (1989); https://doi.org/10.1021/jo00267a034.
R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).
A. Cammarata, J. Med. Chem., 10, 525 (1967); https://doi.org/10.1021/jm00316a004.
A. Leo, C. Hansch and C. Church, J. Med. Chem., 12, 766 (1969); https://doi.org/10.1021/jm00305a010.
R.G. Pearson, Chemical Hardness-Applications from Molecules to Solids, VCH Wiley, Weinheim (1997).
P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); https://doi.org/10.1021/cr990029p.
D.F.V. Lewis, J. Comput. Chem., 8, 1084 (1987); https://doi.org/10.1002/jcc.540080803.
J. Grunenberg and R. Herges, J. Chem. Inf. Comput. Sci., 35, 905 (1995); https://doi.org/10.1021/ci00027a018.