Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Efficiency of X-PIPS Si(Li) Detector and Bremsstrahlung Spectra in Thick Target Produced by b-Emitter 45Ca
Corresponding Author(s) : Tajinder Singh
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
The complete response of the X-PIPS Si(Li) detector has been developed to calculate the total bremsstrahlung spectral photon distributions in thick metallic targets (Al, Cu, Sn and Pb) produced by continuous b-particles of 45Ca in the photon energy region of 5 to 30 keV. The geometrical full-energy peak detection efficiency of the X-PIPS Si(Li) detector has been determined in the photon energy region 5-30 keV. A g-ray source of 133Ba and the X-rays peaks of Ti, Cu, Mo and Sn materials were used for determining the detector parameters and for calibration of the detector. The values of photo-fractions were determined at different photon energies by using the X-rays peaks produced at different photon energy. The geometrical full-energy peak detection efficiency of the detector was determined by using the values of the photo-fraction and intrinsic efficiency of the X-PIPS detector. It has been found that the efficiency of detector efficiency is varying from 95 to 5 % in the studied photon energy region. It is observed that the experimental results show better agreement with the modified Elwert factor (relativistic) Bethe-Heitler theory, which includes the polarization bremsstrahlung into ordinary bremsstrahlung by using stripped atom approximation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.A. Gray, Proc. R. Soc. Math. Phys. Eng. Sci., 85, 131 (1911); https://doi.org/10.1098/rspa.1911.0027.
- J.A. Gray, Proc. R. Soc., Math. Phys. Eng. Sci., 86, 513 (1912); https://doi.org/10.1098/rspa.1912.0043.
- J. Hamilton, L. Langer and W. Smith, Phys. Rev., 112, 2010 (1958); https://doi.org/10.1103/PhysRev.112.2010.
- A.S. Dhaliwal, M.S. Powar and M. Singh, Phys. Rev. A, 48, 1308 (1993); https://doi.org/10.1103/PhysRevA.48.1308.
- S. Portillo and C.A. Quarles, Phys. Rev. Lett., 91, 173201 (2003); https://doi.org/10.1103/PhysRevLett.91.173201.
- T. Singh, K.S. Kahlon and A.S. Dhaliwal, J. Phys. At. Mol. Opt. Phys., 41, 235001 (2008); https://doi.org/10.1088/0953-4075/41/23/235001.
- T. Singh, K.S. Kahlon and A.S. Dhaliwal, Nucl. Instrum. Methods Phys. Res. B, 267, 737 (2009); https://doi.org/10.1016/j.nimb.2009.01.009.
- V. Buimistrov and L. Trakhtenberg, SZh. Eksp. Teor. Fiz., 42, 54 (1975).
- M.Ya. Amusya, M.Yu. Kuchiev, A.V. Korol and A.V. Solov’yov, Zh. Eksp. Teor. Fiz., 61, 224 (1985).
- A.V. Korol, O.I. Obolensky and A.V. Solov’yov, J. Phys. At. Mol. Opt. Phys., 31, 5347 (1998); https://doi.org/10.1088/0953-4075/31/24/015.
- N.B. Avdonina and R.H. Pratt, J. Phys. At. Mol. Opt. Phys., 32, 4261 (1999); https://doi.org/10.1088/0953-4075/32/17/310.
- H. Bethe and W. Heitler, Proc. R. Soc. Lond. A Math. Phys. Sci., 146, 83 (1934); https://doi.org/10.1098/rspa.1934.0140.
- M. Semaan and C.A. Quarles, X Ray Spectrom., 30, 37 (2001); https://doi.org/10.1002/xrs.465.
- M.J. Berger and S.M. Seltzer, NASA SP 3012 (1964); Current Tabulations on the Web: Program ESTAR; http://Physics.nist.gov./PhysRefData/Star/Text/ESTAR.Html.
- C.T. Chantler, K. Olsen, R.A. Dragoset, J. Chang, A.R. Kishore, S.A. Kotochigova and D.S. Zucker, X-Ray Form Factor, Attenuation and Scattering Tables (Version 2.1), National Institute of Standards and Technology, Gaithersburg, MD, Germany (2005).
- P. Macklin, L. Feldman, L. Lidofsky and C. S. Wu, Phys. Rev., 77, 137 (1950); https://doi.org/10.1103/PhysRev.77.137.
References
J.A. Gray, Proc. R. Soc. Math. Phys. Eng. Sci., 85, 131 (1911); https://doi.org/10.1098/rspa.1911.0027.
J.A. Gray, Proc. R. Soc., Math. Phys. Eng. Sci., 86, 513 (1912); https://doi.org/10.1098/rspa.1912.0043.
J. Hamilton, L. Langer and W. Smith, Phys. Rev., 112, 2010 (1958); https://doi.org/10.1103/PhysRev.112.2010.
A.S. Dhaliwal, M.S. Powar and M. Singh, Phys. Rev. A, 48, 1308 (1993); https://doi.org/10.1103/PhysRevA.48.1308.
S. Portillo and C.A. Quarles, Phys. Rev. Lett., 91, 173201 (2003); https://doi.org/10.1103/PhysRevLett.91.173201.
T. Singh, K.S. Kahlon and A.S. Dhaliwal, J. Phys. At. Mol. Opt. Phys., 41, 235001 (2008); https://doi.org/10.1088/0953-4075/41/23/235001.
T. Singh, K.S. Kahlon and A.S. Dhaliwal, Nucl. Instrum. Methods Phys. Res. B, 267, 737 (2009); https://doi.org/10.1016/j.nimb.2009.01.009.
V. Buimistrov and L. Trakhtenberg, SZh. Eksp. Teor. Fiz., 42, 54 (1975).
M.Ya. Amusya, M.Yu. Kuchiev, A.V. Korol and A.V. Solov’yov, Zh. Eksp. Teor. Fiz., 61, 224 (1985).
A.V. Korol, O.I. Obolensky and A.V. Solov’yov, J. Phys. At. Mol. Opt. Phys., 31, 5347 (1998); https://doi.org/10.1088/0953-4075/31/24/015.
N.B. Avdonina and R.H. Pratt, J. Phys. At. Mol. Opt. Phys., 32, 4261 (1999); https://doi.org/10.1088/0953-4075/32/17/310.
H. Bethe and W. Heitler, Proc. R. Soc. Lond. A Math. Phys. Sci., 146, 83 (1934); https://doi.org/10.1098/rspa.1934.0140.
M. Semaan and C.A. Quarles, X Ray Spectrom., 30, 37 (2001); https://doi.org/10.1002/xrs.465.
M.J. Berger and S.M. Seltzer, NASA SP 3012 (1964); Current Tabulations on the Web: Program ESTAR; http://Physics.nist.gov./PhysRefData/Star/Text/ESTAR.Html.
C.T. Chantler, K. Olsen, R.A. Dragoset, J. Chang, A.R. Kishore, S.A. Kotochigova and D.S. Zucker, X-Ray Form Factor, Attenuation and Scattering Tables (Version 2.1), National Institute of Standards and Technology, Gaithersburg, MD, Germany (2005).
P. Macklin, L. Feldman, L. Lidofsky and C. S. Wu, Phys. Rev., 77, 137 (1950); https://doi.org/10.1103/PhysRev.77.137.