Copyright (c) 2018 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication of Poly(vinyl alcohol)/Bentonite Nanocomposites Using Sol-Gel Method
Corresponding Author(s) : M. Sirait
Asian Journal of Chemistry,
Vol. 30 No. 10 (2018): Vol 30 Issue 10, 2018
Abstract
The aim of this study was to find the characteristics of mechanical, morphological and thermal properties of poly(vinyl alcohol) (PVA)/bentonite nanocomposites. The method used in making nanocomposites is sol-gel method. The natural bentonite (size of 35.26 nm) obtained from North Sumatra, Indonesia, was added to the solution of poly(vinyl alcohol) with the quantity varied, namely 0, 2, 4, 6, 8 wt %. The nanocomposites yielded was then characterized by using tensile test, scanning electron microscopy and differential scanning calorimetry. The results showed that the maximum weight of added bentonite, which improved the mechanical properties and produced more homogenous surface, was 6 wt %, whereas the variation of 2, 4 and 8 wt % of bentonite resulted in a decreased elasticity modulus. However, thermal properties is preferable to improve in the 0 wt % of bentonite.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.M. Ajayan, L.S. Schadler and P.V. Braun, Nanocomposite Science and Technology, WILEY-VCH Verlag GmbH Co. KGaA: Weinheim (2003).
- P.H.C. Camargo, K.G. Satyanarayana and F. Wypych, Mater. Res., 12, 1 (2009); https://doi.org/10.1590/S1516-14392009000100002.
- Y. Kojima, K. Fukumori, A. Usuki, A. Okada and T. Kurauchi, J. Mater. Sci. Lett., 12, 889 (1993); https://doi.org/10.1007/BF00455608.
- S. Hashemian, H. Saffari and S. Ragabion, Water Air Soil Pollut., 226, 2212 (2015); https://doi.org/10.1007/s11270-014-2212-6.
- R. Saboori, S. Sabbaghi, D. Mowla and A. Soltani, Int. J. Nano Dimens., 3, 101 (2012); https://doi.org/10.7508/ijnd.2012.02.002.
- M. Sirait, N. Bukit and N. Siregar, AIP Conf. Proc., 1801, 020006 (2017); https://doi.org/10.1063/1.4973084.
- M. George and T.E. Abraham, J. Control. Rel., 114, 1 (2006); https://doi.org/10.1016/j.jconrel.2006.04.017.
- E. Frida, N. Bukit and M.H. Harahap, J. Chem. Mater. Res., 3, 10 (2013).
- E.M. Ginting, N. Bukit, Muliani and E. Frida, IOP Conf. Ser.: Mater. Sci. Eng., 223, 012003 (2017); https://doi.org/10.1088/1757-899X/223/1/012003.
- Y. Yang, C. Liu and H. Wu, Polym. Test., 28, 371 (2009); https://doi.org/10.1016/j.polymertesting.2008.12.008.
- Y. Turhan, Z.G. Alp, M. Alkan and M. Dogan, Micropor. Mesopor. Mater., 174, 144 (2013); https://doi.org/10.1016/j.micromeso.2013.03.002.
- M. Ferrández-Rives, Á. Beltrán-Osuna, J. Gómez-Tejedor and J. GómezRibelles, Materials, 10, 1448 (2017); https://doi.org/10.3390/ma10121448.
- S. Sang, J. Zhang, Q. Wu and Y. Liao, Electrochim. Acta, 52, 7315 (2007); https://doi.org/10.1016/j.electacta.2007.06.004.
- H.S. Hassan, M.F. Elkady, A.H. El-Shazly and H.S. Bamufleh, J. Nanomater., 2014, 1 (2014); https://doi.org/10.1155/2014/967492.
- P.B. Palani, R. Kannan, S. Rajashabala, S. Rajendran and G. Velraj, Ionics, 21, 507 (2015); https://doi.org/10.1007/s11581-014-1193-1.
- J.H. Chang, T.G. Jang, K.J. Ihn, W.K. Lee and G.S. Sur, J. Appl. Polym. Sci., 90, 3208 (2003); https://doi.org/10.1002/app.12996.
- J.H. Chang, D.K. Park and K.J. Ihn, J. Polym. Sci., B, Polym. Phys., 39, 471 (2001); https://doi.org/10.1002/1099-0488(20010301)39:5<471::AIDPOLB1020>3.0.CO;2-6.
- M. Yang, Y. Gao, J.P. He and H.M. Li, Express Polym. Lett., 1, 433 (2007); https://doi.org/10.3144/expresspolymlett.2007.61.
- C. Zilg, R. Mülhaupt and J. Finter, Macromol. Chem. Phys., 200, 661 (1999); https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3<661::AIDMACP661>3.0.CO;2-4.
- S.Y. Fu, X.Q. Feng, B. Lauke and Y.W. Mai, Composites Part B, 39, 933 (2008); https://doi.org/10.1016/j.compositesb.2008.01.002.
- T. Jose, S.C. George, M.M. G, H.J. Maria, R. Wilson and S. Thomas, Ind. Eng. Chem. Res., 53, 16820 (2014); https://doi.org/10.1021/ie502632p.
- C. Johansson and F. Clegg, J. Appl. Polym. Sci., 132, 42229 (2015); https://doi.org/10.1002/app.42229.
- A.A. Sapalidis, F.K. Katsaros, T.A. Steriotis and N.K. Kanellopoulos, J. Appl. Polym. Sci., 123, 1812 (2012); https://doi.org/10.1002/app.34651.
- B.M. Kudaibergenova, M.K. Beisebekov, S.N. Zhumagalieva, M.M. Beisebekov, Z.A. Abilov and M.I. Chaudhary, J. Chem. Soc. Pak., 35, 1279 (2013).
- T. Jose and S.C. George, Polym. Plast. Technol. Eng., 55, 1266 (2016); https://doi.org/10.1080/03602559.2015.1132454.
- N. Bukit, S. Mekanik, Z. Tanpa and Z. Kalsinasi, Makara Teknol., 16, 121 (2012).
References
P.M. Ajayan, L.S. Schadler and P.V. Braun, Nanocomposite Science and Technology, WILEY-VCH Verlag GmbH Co. KGaA: Weinheim (2003).
P.H.C. Camargo, K.G. Satyanarayana and F. Wypych, Mater. Res., 12, 1 (2009); https://doi.org/10.1590/S1516-14392009000100002.
Y. Kojima, K. Fukumori, A. Usuki, A. Okada and T. Kurauchi, J. Mater. Sci. Lett., 12, 889 (1993); https://doi.org/10.1007/BF00455608.
S. Hashemian, H. Saffari and S. Ragabion, Water Air Soil Pollut., 226, 2212 (2015); https://doi.org/10.1007/s11270-014-2212-6.
R. Saboori, S. Sabbaghi, D. Mowla and A. Soltani, Int. J. Nano Dimens., 3, 101 (2012); https://doi.org/10.7508/ijnd.2012.02.002.
M. Sirait, N. Bukit and N. Siregar, AIP Conf. Proc., 1801, 020006 (2017); https://doi.org/10.1063/1.4973084.
M. George and T.E. Abraham, J. Control. Rel., 114, 1 (2006); https://doi.org/10.1016/j.jconrel.2006.04.017.
E. Frida, N. Bukit and M.H. Harahap, J. Chem. Mater. Res., 3, 10 (2013).
E.M. Ginting, N. Bukit, Muliani and E. Frida, IOP Conf. Ser.: Mater. Sci. Eng., 223, 012003 (2017); https://doi.org/10.1088/1757-899X/223/1/012003.
Y. Yang, C. Liu and H. Wu, Polym. Test., 28, 371 (2009); https://doi.org/10.1016/j.polymertesting.2008.12.008.
Y. Turhan, Z.G. Alp, M. Alkan and M. Dogan, Micropor. Mesopor. Mater., 174, 144 (2013); https://doi.org/10.1016/j.micromeso.2013.03.002.
M. Ferrández-Rives, Á. Beltrán-Osuna, J. Gómez-Tejedor and J. GómezRibelles, Materials, 10, 1448 (2017); https://doi.org/10.3390/ma10121448.
S. Sang, J. Zhang, Q. Wu and Y. Liao, Electrochim. Acta, 52, 7315 (2007); https://doi.org/10.1016/j.electacta.2007.06.004.
H.S. Hassan, M.F. Elkady, A.H. El-Shazly and H.S. Bamufleh, J. Nanomater., 2014, 1 (2014); https://doi.org/10.1155/2014/967492.
P.B. Palani, R. Kannan, S. Rajashabala, S. Rajendran and G. Velraj, Ionics, 21, 507 (2015); https://doi.org/10.1007/s11581-014-1193-1.
J.H. Chang, T.G. Jang, K.J. Ihn, W.K. Lee and G.S. Sur, J. Appl. Polym. Sci., 90, 3208 (2003); https://doi.org/10.1002/app.12996.
J.H. Chang, D.K. Park and K.J. Ihn, J. Polym. Sci., B, Polym. Phys., 39, 471 (2001); https://doi.org/10.1002/1099-0488(20010301)39:5<471::AIDPOLB1020>3.0.CO;2-6.
M. Yang, Y. Gao, J.P. He and H.M. Li, Express Polym. Lett., 1, 433 (2007); https://doi.org/10.3144/expresspolymlett.2007.61.
C. Zilg, R. Mülhaupt and J. Finter, Macromol. Chem. Phys., 200, 661 (1999); https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3<661::AIDMACP661>3.0.CO;2-4.
S.Y. Fu, X.Q. Feng, B. Lauke and Y.W. Mai, Composites Part B, 39, 933 (2008); https://doi.org/10.1016/j.compositesb.2008.01.002.
T. Jose, S.C. George, M.M. G, H.J. Maria, R. Wilson and S. Thomas, Ind. Eng. Chem. Res., 53, 16820 (2014); https://doi.org/10.1021/ie502632p.
C. Johansson and F. Clegg, J. Appl. Polym. Sci., 132, 42229 (2015); https://doi.org/10.1002/app.42229.
A.A. Sapalidis, F.K. Katsaros, T.A. Steriotis and N.K. Kanellopoulos, J. Appl. Polym. Sci., 123, 1812 (2012); https://doi.org/10.1002/app.34651.
B.M. Kudaibergenova, M.K. Beisebekov, S.N. Zhumagalieva, M.M. Beisebekov, Z.A. Abilov and M.I. Chaudhary, J. Chem. Soc. Pak., 35, 1279 (2013).
T. Jose and S.C. George, Polym. Plast. Technol. Eng., 55, 1266 (2016); https://doi.org/10.1080/03602559.2015.1132454.
N. Bukit, S. Mekanik, Z. Tanpa and Z. Kalsinasi, Makara Teknol., 16, 121 (2012).