Copyright (c) 2023 S.I. Mujawar, R.S. Yalgudre, G.S. Gokavi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Mechanistic Study of Reaction between 5-Sulfosalicylic Acid and Colloidal MnO2
Corresponding Author(s) : G.S. Gokavi
Asian Journal of Chemistry,
Vol. 35 No. 12 (2023): Vol 35 Issue 12, 2023
Abstract
The reaction between 5-sulfosalicylic acid (5-SSA) and colloidal MnO2 has been studied kinetically in acidic medium. During the reaction the concentration of 5-SSA was kept highly excess than the concentration of colloidal MnO2 to maintain the pseudo-first-order condition. The reaction was studied by following decrease in absorbance of colloidal MnO2 at 390 nm and the first order rate constants were determined from linear log (Abs.) against time plots. The linearity of the first-order plots did not involve any autocatalytic part. The oxidation of 5-sulfosalicylic acid (5-SSA) by colloidal MnO2 involves intervention of free radicals and Mn(III). The product of reaction in colloidal MnO2 was p-hydroxy benzene sulfonate ion as confirmed by LCMS-MS analysis. The oxidation by colloidal MnO2 consists of acid dependent and independent mechanisms. The results of added Mn(II), Na4P2O7 and acrylonitrile indicate involvement of Mn(III) and free radical during oxidation by colloidal MnO2. The probable mechanisms for acid dependent and independent paths were predicted and the rate expressions were also obtained. The activation parameters also support the proposed mechanisms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- O. Meulemans, Clin. Chim. Acta, 5, 757 (1960); https://doi.org/10.1016/0009-8981(60)90020-6
- B. Ray, P.K. Ghosal, S. Thakur and S.G. Majumdar, J. Chromatogr. A, 315, 401 (1984); https://doi.org/10.1016/S0021-9673(01)90759-9
- V.P.R. Rao and D. Satyanarayana, Talanta, 8, 907 (1961); https://doi.org/10.1016/0039-9140(61)80217-8
- H. Xie, K. Du, G. Hu, J. Duan, Z. Peng, Z. Zhang and Y. Cao, J. Mater. Chem. A Mater. Energy Sustain., 3, 20236 (2015); https://doi.org/10.1039/C5TA05266A
- D.D. Gadge and P.S. Kulkarni, J. Heterocycl. Chem., 59, 1320 (2022); https://doi.org/10.1002/jhet.4469
- S. Karhale and V. Helavi, SN Appl. Sci., 2, 1227 (2020); https://doi.org/10.1007/s42452-020-3056-x
- H. Kiyani, H. Darbandi, A. Mosallanezhad and F. Ghorbani, Res. Chem. Intermed., 41, 7561 (2015); https://doi.org/10.1007/s11164-014-1844-x
- C. Chen, X. Zhu, Y. Wu, H. Sun, G. Zhang, W. Zhang and Z. Gao, J. Mol. Catal. Chem., 395, 124 (2014); https://doi.org/10.1016/j.molcata.2014.08.017
- N.N.G. Mohammed and M.S. Pandharpatte, Der Chimica Sinica, 1, 15 (2010).
- I.P. Pozdnyakov, V.F. Plyusnin, V.P. Grivin, D.Y. Vorobyev, A.I. Kruppa and H. Lemmetyinen, J. Photochem. Photobiol. Chem., 162, 153 (2004); https://doi.org/10.1016/S1010-6030(03)00341-1
- A.J. Ebele, M. Abou-Elwafa Abdallah and S. Harrad, Emerg. Contam., 3, 1 (2017); https://doi.org/10.1016/j.emcon.2016.12.004
- Q. Dai, Z. Zhang, T. Zhan, Z.T. Hu and J. Chen, ACS Omega, 3, 6506 (2018); https://doi.org/10.1021/acsomega.8b00263
- X.R. Lin, E. Kwon, C. Hung, C.W. Huang, W.D. Oh and K.A. Lin, J. Colloid Interface Sci., 584, 749 (2021); https://doi.org/10.1016/j.jcis.2020.09.104
- S. Tong, D. Xie, H. Wei and W. Liu, Ozone Sci. Eng., 27, 233 (2005); https://doi.org/10.1080/01919510590945804
- H. Liu, S. Cheng, M. Wu, H. Wu, J. Zhang, W. Li and C. Cao, J. Phys. Chem. A, 104, 7016 (2000); https://doi.org/10.1021/jp000171q
- S. Tong, W. Liu, W. Leng and Q. Zhang, Chemosphere, 50, 1359 (2003); https://doi.org/10.1016/S0045-6535(02)00761-0
- S. Bauer, J.C. Namyslo, D.E. Kaufmann and T. Turek, J. Electrochem. Soc., 167, 110522 (2020); https://doi.org/10.1149/1945-7111/aba338
- Y. Yang, D. Wang, J. Zheng, X. Qin, D. Fang, Y. Wu and M. Jing, Electrochim. Acta, 452, 142292 (2023); https://doi.org/10.1016/j.electacta.2023.142292
- S. Li, F. Zheng, S. Cai, W. Liang and Y. Li, Sens. Actuators B Chem., 188, 280 (2013); https://doi.org/10.1016/j.snb.2013.06.105
- C.F. Yan, F.L. Jiang, L. Chen, R. Feng, M. Yang and M. Hong, J. Solid State Chem., 182, 3162 (2009); https://doi.org/10.1016/j.jssc.2009.08.025
- Q. Liu, K. Du, M. Liu, R. Lv, B. Sun, D. Cao, N. He and Z. Wang, Biomater. Sci., 7, 5482 (2019); https://doi.org/10.1039/C9BM00799G
- L. Ma, F. Zhao, J. Zhang, G. Ma, Y. Zhao, J. Zhang and G. Chen, C.R. Chim., 24, 61 (2021); https://doi.org/10.5802/crchim.65
- J. Shan and Y.P. Liu, Asian J. Chem., 24, 367 (2012).
- J.F. Perez-Benito, E. Brillas and R. Pouplana, Inorg. Chem., 28, 390 (1989); https://doi.org/10.1021/ic00302a002
- J.F. Perez-Benito and C. Arias, J. Colloid Interface Sci., 149, 92 (1992); https://doi.org/10.1016/0021-9797(92)90394-2
- J.F. Perez-Benito, C. Arias and E. Amat, J. Colloid Interface Sci., 177, 288 (1996); https://doi.org/10.1006/jcis.1996.0034
- Z. Khan, P. Kumar and Kabir-ud-Din, Colloids Surf. A Physicochem. Eng. Asp., 248, 25 (2004); https://doi.org/10.1016/j.colsurfa.2004.08.020
- Kabir-ud-Din, N.Z. Zaidi, M. Akram and Z. Khan, Colloid Polym. Sci., 284, 1387 (2006); https://doi.org/10.1007/s00396-006-1507-6
- Z. Khan, M. Raju, M. Akram and Kabir-ud-Din, Int. J. Chem. Kinet., 36, 359 (2004); https://doi.org/10.1002/kin.20010
- S.A. Khan, P. Kumar, K. Saleem and Z. Khan, Colloids Surf. A Physicochem. Eng. Asp., 302, 102 (2007); https://doi.org/10.1016/j.colsurfa.2007.02.006
- J.P. Guthrie, Can. J. Chem., 56, 2342 (1978); https://doi.org/10.1139/v78-385
- M.C. Chattopadhyaya and R.S. Singh, Indian J. Chem., 19A, 141 (1980).
- G.W. Luther, A.T. Chanvalon, V.E. Oldham, E.R. Estes, B.M. Tebo and A.S. Madison, Aquat. Geochem., 24, 257 (2018); https://doi.org/10.1007/s10498-018-9342-1
- D.E. Chirkst, O.V. Cheremisina, M.A. Sulimova, A.A. Kuzhaeva and P.V. Zgonnik, Russ. J. Gen. Chem., 81, 704 (2011); https://doi.org/10.1134/S1070363211040141
- D.G. Lee and C.F. Sebastian, Can. J. Chem., 59, 2780 (1981); https://doi.org/10.1139/v81-402
- A.A.N. Magro, G.R. Eastham and D.J. Cole-Hamilton, Dalton Trans., 4683 (2009); https://doi.org/10.1039/B900398C
References
O. Meulemans, Clin. Chim. Acta, 5, 757 (1960); https://doi.org/10.1016/0009-8981(60)90020-6
B. Ray, P.K. Ghosal, S. Thakur and S.G. Majumdar, J. Chromatogr. A, 315, 401 (1984); https://doi.org/10.1016/S0021-9673(01)90759-9
V.P.R. Rao and D. Satyanarayana, Talanta, 8, 907 (1961); https://doi.org/10.1016/0039-9140(61)80217-8
H. Xie, K. Du, G. Hu, J. Duan, Z. Peng, Z. Zhang and Y. Cao, J. Mater. Chem. A Mater. Energy Sustain., 3, 20236 (2015); https://doi.org/10.1039/C5TA05266A
D.D. Gadge and P.S. Kulkarni, J. Heterocycl. Chem., 59, 1320 (2022); https://doi.org/10.1002/jhet.4469
S. Karhale and V. Helavi, SN Appl. Sci., 2, 1227 (2020); https://doi.org/10.1007/s42452-020-3056-x
H. Kiyani, H. Darbandi, A. Mosallanezhad and F. Ghorbani, Res. Chem. Intermed., 41, 7561 (2015); https://doi.org/10.1007/s11164-014-1844-x
C. Chen, X. Zhu, Y. Wu, H. Sun, G. Zhang, W. Zhang and Z. Gao, J. Mol. Catal. Chem., 395, 124 (2014); https://doi.org/10.1016/j.molcata.2014.08.017
N.N.G. Mohammed and M.S. Pandharpatte, Der Chimica Sinica, 1, 15 (2010).
I.P. Pozdnyakov, V.F. Plyusnin, V.P. Grivin, D.Y. Vorobyev, A.I. Kruppa and H. Lemmetyinen, J. Photochem. Photobiol. Chem., 162, 153 (2004); https://doi.org/10.1016/S1010-6030(03)00341-1
A.J. Ebele, M. Abou-Elwafa Abdallah and S. Harrad, Emerg. Contam., 3, 1 (2017); https://doi.org/10.1016/j.emcon.2016.12.004
Q. Dai, Z. Zhang, T. Zhan, Z.T. Hu and J. Chen, ACS Omega, 3, 6506 (2018); https://doi.org/10.1021/acsomega.8b00263
X.R. Lin, E. Kwon, C. Hung, C.W. Huang, W.D. Oh and K.A. Lin, J. Colloid Interface Sci., 584, 749 (2021); https://doi.org/10.1016/j.jcis.2020.09.104
S. Tong, D. Xie, H. Wei and W. Liu, Ozone Sci. Eng., 27, 233 (2005); https://doi.org/10.1080/01919510590945804
H. Liu, S. Cheng, M. Wu, H. Wu, J. Zhang, W. Li and C. Cao, J. Phys. Chem. A, 104, 7016 (2000); https://doi.org/10.1021/jp000171q
S. Tong, W. Liu, W. Leng and Q. Zhang, Chemosphere, 50, 1359 (2003); https://doi.org/10.1016/S0045-6535(02)00761-0
S. Bauer, J.C. Namyslo, D.E. Kaufmann and T. Turek, J. Electrochem. Soc., 167, 110522 (2020); https://doi.org/10.1149/1945-7111/aba338
Y. Yang, D. Wang, J. Zheng, X. Qin, D. Fang, Y. Wu and M. Jing, Electrochim. Acta, 452, 142292 (2023); https://doi.org/10.1016/j.electacta.2023.142292
S. Li, F. Zheng, S. Cai, W. Liang and Y. Li, Sens. Actuators B Chem., 188, 280 (2013); https://doi.org/10.1016/j.snb.2013.06.105
C.F. Yan, F.L. Jiang, L. Chen, R. Feng, M. Yang and M. Hong, J. Solid State Chem., 182, 3162 (2009); https://doi.org/10.1016/j.jssc.2009.08.025
Q. Liu, K. Du, M. Liu, R. Lv, B. Sun, D. Cao, N. He and Z. Wang, Biomater. Sci., 7, 5482 (2019); https://doi.org/10.1039/C9BM00799G
L. Ma, F. Zhao, J. Zhang, G. Ma, Y. Zhao, J. Zhang and G. Chen, C.R. Chim., 24, 61 (2021); https://doi.org/10.5802/crchim.65
J. Shan and Y.P. Liu, Asian J. Chem., 24, 367 (2012).
J.F. Perez-Benito, E. Brillas and R. Pouplana, Inorg. Chem., 28, 390 (1989); https://doi.org/10.1021/ic00302a002
J.F. Perez-Benito and C. Arias, J. Colloid Interface Sci., 149, 92 (1992); https://doi.org/10.1016/0021-9797(92)90394-2
J.F. Perez-Benito, C. Arias and E. Amat, J. Colloid Interface Sci., 177, 288 (1996); https://doi.org/10.1006/jcis.1996.0034
Z. Khan, P. Kumar and Kabir-ud-Din, Colloids Surf. A Physicochem. Eng. Asp., 248, 25 (2004); https://doi.org/10.1016/j.colsurfa.2004.08.020
Kabir-ud-Din, N.Z. Zaidi, M. Akram and Z. Khan, Colloid Polym. Sci., 284, 1387 (2006); https://doi.org/10.1007/s00396-006-1507-6
Z. Khan, M. Raju, M. Akram and Kabir-ud-Din, Int. J. Chem. Kinet., 36, 359 (2004); https://doi.org/10.1002/kin.20010
S.A. Khan, P. Kumar, K. Saleem and Z. Khan, Colloids Surf. A Physicochem. Eng. Asp., 302, 102 (2007); https://doi.org/10.1016/j.colsurfa.2007.02.006
J.P. Guthrie, Can. J. Chem., 56, 2342 (1978); https://doi.org/10.1139/v78-385
M.C. Chattopadhyaya and R.S. Singh, Indian J. Chem., 19A, 141 (1980).
G.W. Luther, A.T. Chanvalon, V.E. Oldham, E.R. Estes, B.M. Tebo and A.S. Madison, Aquat. Geochem., 24, 257 (2018); https://doi.org/10.1007/s10498-018-9342-1
D.E. Chirkst, O.V. Cheremisina, M.A. Sulimova, A.A. Kuzhaeva and P.V. Zgonnik, Russ. J. Gen. Chem., 81, 704 (2011); https://doi.org/10.1134/S1070363211040141
D.G. Lee and C.F. Sebastian, Can. J. Chem., 59, 2780 (1981); https://doi.org/10.1139/v81-402
A.A.N. Magro, G.R. Eastham and D.J. Cole-Hamilton, Dalton Trans., 4683 (2009); https://doi.org/10.1039/B900398C