Copyright (c) 2023 K. Mageswari, T. Bavani, J. Madhavan, P. Prabukanthan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Highly Effective Photocatalytic Performance in Visible Light of Sodium hexametaphosphate Capped Ni-Doped ZnO Nanoparticles
Asian Journal of Chemistry,
Vol. 35 No. 12 (2023): Vol 35 Issue 12, 2023
Abstract
This study describes the microwave assisted synthesis of without and with sodium hexametaphosphate (SHMP) (1 mol%) capped 3 mol% Ni- doped ZnO nanoparticles. Various sophisticated analytical techniques were used to characterize the Ni-doped ZnO nanoparticles. The results showed that including SHMP capped 3 mol% Ni-doped ZnO nanoparticles has a significant influence on the photoctalyst and structural characteristics of the ZnO nanoparticles. Under visible light illumination, SHMP capped 3 mol% Ni-doped ZnO nanoparticles demonstrated better photocatalytic degradation of methylene blue dye. As a result, SHMP capped 3 mol% Ni-doped ZnO nanoparticles synthesized are suitable materials for the environmental applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.V. Encinas, A.M. Rufs, M.G. Neumann and C.M. Previtali, Polymer, 37, 1395 (1996); https://doi.org/10.1016/0032-3861(96)81137-2
- H.R. Pouretedal and M.H. Keshavarz, Int. J. Phys. Sci., 6, 6268 (2011); https://doi.org/10.5897/IJPS09.251
- I. Akanyeti, A. Kraft and M.C. Ferrari, J. Water Process Eng., 17, 102 (2017); https://doi.org/10.1016/j.jwpe.2017.02.014
- A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar and M. Rafatullah, RSC Adv., 5, 30801 (2015); https://doi.org/10.1039/C4RA16959J
- M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveen, I. Kartharinal Punithavathy and J.P. Richard, J. Solar Energy, 159, 434 (2018); https://doi.org/10.1016/j.solener.2017.10.055
- A. Mclaren, T. Valdes-Solis, G. Li and S.C. Tsang, J. Am. Chem. Soc., 131, 12540 (2009); https://doi.org/10.1021/ja9052703
- N.M. Flores, U. Pal, R. Galeazzi and A. Sandoval, RSC Adv., 4, 41099 (2014); https://doi.org/10.1039/C4RA04522J
- L-L. Lin, X.-G Wang and J. Zhang, eds. H. Haeri: A Review on the Application of Photocatalytic Materials, In: Materials in Environmental Engineering: Proceedings of the 4th Annual International Conference on Materials Science and Environmental Engineering, Berlin, Boston: De Gruyter, pp. 473-480 (2017); https://doi.org/10.1515/9783110516623-046
- M.Y. Chiang and H.N. Lin, Mater. Lett., 160, 440 (2015); https://doi.org/10.1016/j.matlet.2015.08.021
- A. Murali, P.K. Sarswat and H.Y. Sohn, Mater. Today Chem., 11, 60 (2019); https://doi.org/10.1016/j.mtchem.2018.10.007
- M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade and A.Z. Moshfegh, Thin Solid Films, 605, 2 (2016); https://doi.org/10.1016/j.tsf.2015.12.064
- K. Bhuvaneswari, G. Palanisamy, K. Sivashanmugan, T. Pazhanivel and T.J. Maiyalagan, J. Environ. Chem. Eng., 9, 104909 (2021); https://doi.org/10.1016/j.jece.2020.104909
- S. Krishnan and A. Shriwastav, J. Environ. Chem. Eng., 9, 104699 (2021); https://doi.org/10.1016/j.jece.2020.104699
- N. Belachew, M.H. Kahsay, A. Tadesse and K. Basavaiah, J. Environ. Chem. Eng., 8, 104106 (2020); https://doi.org/10.1016/j.jece.2020.104106
- A.I. Yalçin and F.G. Yazicioglu, J. Exercise Ther. Rehab., 10, 1 (2023); https://doi.org/10.15437/jetr.1133913
- K. Mageswari, P. Prabukanthan and J. Madhavan, Environ. Sci. Pollut. Res. Int., 30, 40174 (2023); https://doi.org/10.1007/s11356-022-25097-9
- R. Mohan, C. Rakkappan, N. Punitha, K. Jayamoorthy, P. Magesan and N. Srinivasan, Chemical Physics Impact, 7, 100260 (2023); https://doi.org/10.1016/j.chphi.2023.100260
- K.F. Chepape, T. P. Mofokeng, P. Nyamukamba, K.P. Mubiayi, and M.J. Moloto, J. Nanotechnol., 2017, 5340784 (2017); https://doi.org/10.1155/2017/5340784
- B. Fang, Z. Xing, D. Sun, Z. Li and W. Zhou, Adv. Powder Mater., 1, 100021 (2022); https://doi.org/10.1016/j.apmate.2021.11.008
- S. Arumugam, T. Bavani, M. Preeyanghaa, S.O. Alaswad, B. Neppolian, J. Madhavan and S. Murugesan, Chemosphere, 308, 136100 (2022); https://doi.org/10.1016/j.chemosphere.2022.136100
- P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere and A. Airinei, Appl. Surf. Sci., 448, 481 (2018); https://doi.org/10.1016/j.apsusc.2018.04.124
- M. Adeel, M. Saeed, I. Khan, M. Muneer and N. Akram, ACS Omega, 6, 1426 (2021); https://doi.org/10.1021/acsomega.0c05092
- S. Siahrostami, G.-L. Li, V. Viswanathan and J.K. Nørskov, J. Phys. Chem. Lett., 8, 1157 (2017); https://doi.org/10.1021/acs.jpclett.6b02924
- S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta and S. Arumainathan, Sci. Rep., 6, 31641 (2016); https://doi.org/10.1038/srep31641
- S. Vignesh, S. Suganthi, J.K. Sundar, V. Raj and P.I. Devi, Appl. Surf. Sci., 479, 914 (2019); https://doi.org/10.1016/j.apsusc.2019.02.064
- A. Serra, Y. Zhang, B. Sepúlveda, E. Gómez, J. Nogués, J. Michler and L. Philippe, Appl. Catal. B, 248, 129 (2019); https://doi.org/10.1016/j.apcatb.2019.02.017
- M. Ahmad, W. Rehman, M.M. Khan, M.T. Qureshi, A. Gul, S. Haq, R. Ullah, A. Rab and F. Menaa, J. Environ. Chem. Eng., 9, 104725 (2021); https://doi.org/10.1016/j.jece.2020.104725
- L.T. Nguyen, D.V.N. Vo, L.T. Nguyen, A.T. Duong, H.Q. Nguyen, N.M. Chu, D.T.C. Nguyen and T.V. Tran, Environ. Technol. Innov., 25, 102130 (2022); https://doi.org/10.1016/j.eti.2021.102130
- M.F. Abdel Messih, M.A. Ahmed, A. Soltan and S.S. Anis, J. Phys. Chem. Solids, 135, 109086 (2019); https://doi.org/10.1016/j.jpcs.2019.109086
- X. Jiang, L. Huang, J. Li, L. Zhang, X. Guo, Y. Li and X. Sun, J. Environ. Chem. Eng., 9, 105608 (2021); https://doi.org/10.1016/j.jece.2021.105608
- V. Kumari, A. Mittal, J. Jindal, S. Yadav and N. Kumar, Front. Mater. Sci., 13, 1 (2019); https://doi.org/10.1007/s11706-019-0453-4
- G. Madhumitha, J. Fowsiya, N. Gupta, A. Kumar and M. Singh, J. Phys. Chem. Solids, 127, 43 (2019); https://doi.org/10.1016/j.jpcs.2018.12.005
- T. Senasu, T. Chankhanittha, K. Hemavibool and S. Nanan, Mater. Sci. Semicond. Process., 123, 105558 (2020); https://doi.org/10.1016/j.mssp.2020.105558
References
M.V. Encinas, A.M. Rufs, M.G. Neumann and C.M. Previtali, Polymer, 37, 1395 (1996); https://doi.org/10.1016/0032-3861(96)81137-2
H.R. Pouretedal and M.H. Keshavarz, Int. J. Phys. Sci., 6, 6268 (2011); https://doi.org/10.5897/IJPS09.251
I. Akanyeti, A. Kraft and M.C. Ferrari, J. Water Process Eng., 17, 102 (2017); https://doi.org/10.1016/j.jwpe.2017.02.014
A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar and M. Rafatullah, RSC Adv., 5, 30801 (2015); https://doi.org/10.1039/C4RA16959J
M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveen, I. Kartharinal Punithavathy and J.P. Richard, J. Solar Energy, 159, 434 (2018); https://doi.org/10.1016/j.solener.2017.10.055
A. Mclaren, T. Valdes-Solis, G. Li and S.C. Tsang, J. Am. Chem. Soc., 131, 12540 (2009); https://doi.org/10.1021/ja9052703
N.M. Flores, U. Pal, R. Galeazzi and A. Sandoval, RSC Adv., 4, 41099 (2014); https://doi.org/10.1039/C4RA04522J
L-L. Lin, X.-G Wang and J. Zhang, eds. H. Haeri: A Review on the Application of Photocatalytic Materials, In: Materials in Environmental Engineering: Proceedings of the 4th Annual International Conference on Materials Science and Environmental Engineering, Berlin, Boston: De Gruyter, pp. 473-480 (2017); https://doi.org/10.1515/9783110516623-046
M.Y. Chiang and H.N. Lin, Mater. Lett., 160, 440 (2015); https://doi.org/10.1016/j.matlet.2015.08.021
A. Murali, P.K. Sarswat and H.Y. Sohn, Mater. Today Chem., 11, 60 (2019); https://doi.org/10.1016/j.mtchem.2018.10.007
M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade and A.Z. Moshfegh, Thin Solid Films, 605, 2 (2016); https://doi.org/10.1016/j.tsf.2015.12.064
K. Bhuvaneswari, G. Palanisamy, K. Sivashanmugan, T. Pazhanivel and T.J. Maiyalagan, J. Environ. Chem. Eng., 9, 104909 (2021); https://doi.org/10.1016/j.jece.2020.104909
S. Krishnan and A. Shriwastav, J. Environ. Chem. Eng., 9, 104699 (2021); https://doi.org/10.1016/j.jece.2020.104699
N. Belachew, M.H. Kahsay, A. Tadesse and K. Basavaiah, J. Environ. Chem. Eng., 8, 104106 (2020); https://doi.org/10.1016/j.jece.2020.104106
A.I. Yalçin and F.G. Yazicioglu, J. Exercise Ther. Rehab., 10, 1 (2023); https://doi.org/10.15437/jetr.1133913
K. Mageswari, P. Prabukanthan and J. Madhavan, Environ. Sci. Pollut. Res. Int., 30, 40174 (2023); https://doi.org/10.1007/s11356-022-25097-9
R. Mohan, C. Rakkappan, N. Punitha, K. Jayamoorthy, P. Magesan and N. Srinivasan, Chemical Physics Impact, 7, 100260 (2023); https://doi.org/10.1016/j.chphi.2023.100260
K.F. Chepape, T. P. Mofokeng, P. Nyamukamba, K.P. Mubiayi, and M.J. Moloto, J. Nanotechnol., 2017, 5340784 (2017); https://doi.org/10.1155/2017/5340784
B. Fang, Z. Xing, D. Sun, Z. Li and W. Zhou, Adv. Powder Mater., 1, 100021 (2022); https://doi.org/10.1016/j.apmate.2021.11.008
S. Arumugam, T. Bavani, M. Preeyanghaa, S.O. Alaswad, B. Neppolian, J. Madhavan and S. Murugesan, Chemosphere, 308, 136100 (2022); https://doi.org/10.1016/j.chemosphere.2022.136100
P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere and A. Airinei, Appl. Surf. Sci., 448, 481 (2018); https://doi.org/10.1016/j.apsusc.2018.04.124
M. Adeel, M. Saeed, I. Khan, M. Muneer and N. Akram, ACS Omega, 6, 1426 (2021); https://doi.org/10.1021/acsomega.0c05092
S. Siahrostami, G.-L. Li, V. Viswanathan and J.K. Nørskov, J. Phys. Chem. Lett., 8, 1157 (2017); https://doi.org/10.1021/acs.jpclett.6b02924
S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta and S. Arumainathan, Sci. Rep., 6, 31641 (2016); https://doi.org/10.1038/srep31641
S. Vignesh, S. Suganthi, J.K. Sundar, V. Raj and P.I. Devi, Appl. Surf. Sci., 479, 914 (2019); https://doi.org/10.1016/j.apsusc.2019.02.064
A. Serra, Y. Zhang, B. Sepúlveda, E. Gómez, J. Nogués, J. Michler and L. Philippe, Appl. Catal. B, 248, 129 (2019); https://doi.org/10.1016/j.apcatb.2019.02.017
M. Ahmad, W. Rehman, M.M. Khan, M.T. Qureshi, A. Gul, S. Haq, R. Ullah, A. Rab and F. Menaa, J. Environ. Chem. Eng., 9, 104725 (2021); https://doi.org/10.1016/j.jece.2020.104725
L.T. Nguyen, D.V.N. Vo, L.T. Nguyen, A.T. Duong, H.Q. Nguyen, N.M. Chu, D.T.C. Nguyen and T.V. Tran, Environ. Technol. Innov., 25, 102130 (2022); https://doi.org/10.1016/j.eti.2021.102130
M.F. Abdel Messih, M.A. Ahmed, A. Soltan and S.S. Anis, J. Phys. Chem. Solids, 135, 109086 (2019); https://doi.org/10.1016/j.jpcs.2019.109086
X. Jiang, L. Huang, J. Li, L. Zhang, X. Guo, Y. Li and X. Sun, J. Environ. Chem. Eng., 9, 105608 (2021); https://doi.org/10.1016/j.jece.2021.105608
V. Kumari, A. Mittal, J. Jindal, S. Yadav and N. Kumar, Front. Mater. Sci., 13, 1 (2019); https://doi.org/10.1007/s11706-019-0453-4
G. Madhumitha, J. Fowsiya, N. Gupta, A. Kumar and M. Singh, J. Phys. Chem. Solids, 127, 43 (2019); https://doi.org/10.1016/j.jpcs.2018.12.005
T. Senasu, T. Chankhanittha, K. Hemavibool and S. Nanan, Mater. Sci. Semicond. Process., 123, 105558 (2020); https://doi.org/10.1016/j.mssp.2020.105558