Copyright (c) 2024 Rajat Patel, Puja Sharma, Rohit R. Koshti, Akshay Vyas, Chetan B. Sangani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, DFT Studies, Biological Investigation and Molecular Modelling of Novel 1-(5-(1H-imidazol-1-yl)-3-methyl-1-phenyl-1H-pyrazol-4-yl)- 3-amino-2-cyano-N-phenyl-1H-benzo[f]chromene-5-carboxamide Derivatives
Corresponding Author(s) : Chetan B. Sangani
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
In this work, a new series of imidazole-pyrazole-benzo[f]chromene hybrids were designed and synthesized by a base-catalyzed cyclo-condensation through a one-pot multicomponent reaction. All compounds were tested for in vitro antimicrobial and anticancer activities. Enzyme inhibitory activities of all compounds were carried out against FabH and EGFR. The majority of synthesized compounds displayed promising antimicrobial as well as anticancer activity against used strains and cancer cell lines respectively. The compounds were also tested for in vitro anticancer activities against two cancer cell lines A549 and Hep G2. Compound 7f (IC50 = 0.62 µM) against EGFR and (IC50 = 1.31 µM) against A549 kinase displayed the most potent inhibitory activity as compared to another member of the series. In the molecular modelling study, compound 7e was bound into the active pocket of EGFR with one pi-pi interaction and one hydrogen bond having minimum binding energy ∆Gb = −7.6894 kcal/mol. Moreover, FabH molecule 7d was found to be binding in the active pocket with a minimum binding energy of −8.9117 kcal/mol.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. S. Ibrahim, M. M. Hawwas , E. Taher , N. A. Alhakamy, M A. Alfaleh , M.Elagawany , Bahaa Elgendy, Gamal M. Zayed, Mamdouh F.A. Mohamed , Zakaria K. Abdel-Samii , Y. A.M.M. Elshaier, Bioorganic Chemistry , 105, 104352 (2020)
- R.L. Siegel, K.D. Miller, H.E. Fuchs and A. Jemal, CA Cancer J. Clin., 71, 7 (2021); https://doi.org/10.3322/caac.21654
- M. Morales-Cruz, Y. Delgado, B Castillo, C. M Figueroa, A. M Molina, A. Torres, M. Milián, K. Griebenow, Drug Design, Development and Therapy, 13 3753–3772 (2019)
- . M. Tateishi and T. Ishida, Cancer Res., 50, 7077 (1990).
- A. Ayati, et al. Bioorganic Chemistry 99 (2020) 103811 https://doi.org/10.1016/j.bioorg.2020.103811
- . S.W. White, J. Zheng, Y.M. Zhang and C.O. Rock, Annu. Rev. Biochem., 74, 791 (2005); https://doi.org/10.1146/annurev.biochem.74.082803.133524
- . K.S. Kolibaba and B.J. Druker, Biochim. Biophys. Acta, 1333, F217 (1997);
- . Meuillet/Bremer, Pediatr Neurosurg 1998;29:1–13
- . Sequist, The Oncologist 2007;12:325–330
- M.C. Mandewale et al. / Beni-Suef Univ. J. Basic Appl. Sci. 6 (2017) 354–361
- Xiang Wen • Shi-Ben Wang • Da-Chuan Liu • Guo-Hua Gong • Zhe-Shan Quan , Med Chem Res DOI 10.1007/s00044-015-1323-y
- R. Kaur and K. Kumar, European Journal of Medicinal Chemistry 215 (2021) 113220
- Zhang, F.; et al. Bioorg. Med. Chem. Lett. (2013), http://dx.doi.org/10.1016/j.bmcl.2013.11.079 [14] White et al Annu. Rev. Biochem. 2005. 74:791–831 doi:10.1146/annurev.biochem.74.082803.133524
- Ying-Jie Lu, Yong-Mei Zhang, and Charles O. Rock, Biochem. Cell Biol. 82: 145–155 (2004) doi: 10.1139/O03-076
- Ming Chen* and Jiaoti Huang*, Precision Clinical Medicine, 2(3), 2019, 183–191 doi: 10.1093/pcmedi/pbz017
- Y.-T. Wang, T.-Q. Shi, J. Fu, H.-L. Zhu, European Journal of Medicinal Chemistry (2019), doi: https:// doi.org/10.1016/j.ejmech.2019.03.026.
- K.S. Gajiwala et al. / FEBS Letters 583 (2009) 2939–2946 doi:10.1016/j.febslet.2009.08.001
- M. Negi, P.A. Chawla, A. Faruk, V. Chawla, Bioorganic Chemistry (2020), doi: https://doi.org/10.1016/j.bioorg.2020.104315
- A. Mermer et al., Bioorganic Chemistry 114 (2021) 105076 https://doi.org/10.1016/j.bioorg.2021.105076
- P. Yadav and K. Shah Bioorganic Chemistry 109 (2021) 104639 https://doi.org/10.1016/j.bioorg.2021.104639
- J. Drogosz-Stachowicz, et al Chemico-Biological Interactions 320 (2020) 109005 https://doi.org/10.1016/j.cbi.2020.109005
- K.D. Katariya, S.R. Shah, D. Reddy, Bioorganic Chemistry (2019), doi: https://doi.org/10.1016/j.bioorg.2019.103406
- Robert Musiol, Expert Opinion on Drug Discovery, DOI: 10.1080/17460441.2017.1319357
- M.C. Mandewale etal., Beni-Suef Univ. J. Basic Appl. Sci. 6 (2017) 354–361 http://dx.doi.org/10.1016/j.bjbas.2017.07.005
- Teng, P., Li, C., Peng, Z., Marie Vanderschouw, A., Nimmagadda, A., Su, M., Li, Y., Sun, X., Cai, J., Bioorganic & Medicinal Chemistry (2018), doi: https://doi.org/10.1016/j.bmc.2018.05.031
- Xiao Z, Lei F, Chen X, et al. Arch Pharm Chem Life Sci. 2018;1–11 DOI: 10.1002/ardp.201700407
- D. Mantu et al. J Enzyme Inhib Med Chem, Early Online: 1–8
- DOI: 10.1080/14756366.2016.1190711
- A. Irfan et al. Journal of Enzyme Inhibition and Medicinal Chemistry 2020, VOL. 35, NO. 1, 265–279 https://doi.org/10.1080/14756366.2019.1698036
- Haroun et al. Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 1
- DOI: 10.2174/1568026618666180206101814
- N. C. Desai, D. Pandya, D. Vaja, Med Chem Res DOI 10.1007/s00044-017-2040-5
- Singh et al., International Current Pharmaceutical Journal 2012, 1(5): 119-127 http://www.icpjonline.com/documents/Vol1Issue5/05.pdf
- Ruhi Ali and Nadeem Siddiqui Journal of Chemistry Volume 2013, Article ID 345198, http://dx.doi.org/10.1155/2013/345198
- R Kurtaran, S Odabaşıoğlu, A Azizoglu, H Kara, O Atakol, Polyhedron, 26, 5069,
- (2007).
- Mahmoud WH, Omar MM, Sayed FN, Mohamed GG. Synthesis, characterization,
- spectroscopic and theoratical studies of transition metal complexes of new nano Schiff base
- derived from L-histidine and 2-acetylferrocene and evaluation of biological and anticancer
- activities. Appl. Organomet. Chem 32(7):4386-4390. (2018).
- Neese, F. The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012;2, 73–78.
- Neese, F. Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev.: Comput. Mol. Sci.2017; 8, e1327.
- P Sharma, R Patel, RR Koshti, A Vyas, & CB Sangani. Synthesis, Biological Evaluation and Molecular Modeling of Pyrazole-Phthalazine Hybrid Derivatives Bearing 2-Aryloxy Quinoline Nucleus and their Computational Quantum Mechanical Modelling. Asian Journal of Chemistry, 34(12), 3169-3182. (2022).
- R Patel, P Sharma, RR Koshti, A Vyas, & CB Sangani. Synthesis, Characterization and molecular modeling of pyrazole-quinoline hybrids as a new class of antibacterial, antimicrobial, anticancer agents and DFT study. Asian Journal of Chemistry, 35(4), 828-838. (2023).
- P Sharma, R Patel, RR Koshti, A Vyas, & CB Sangani. Synthesis, Synthesis, Biological Evaluation and Molecular Modeling of Novel Ethyl 2′-Amino-5′-oxo-1′-(4-phenylthiazol-2-yl)-2-(phenylthio)-1′,4′,5′,6′,7′,8′-hexahydro-[3,4′-biquinoline]-3′-carboxylate Derivatives and their Computational Quantum Mechanical Modelling. Asian Journal of Chemistry, 35(6), 1320-1332. (2023).
- R Patel, P Sharma, RR Koshti, A Vyas, & CB Sangani. Synthesis, Synthesis, Biological Evaluation, DFT Studies and Molecular Docking of Novel 4-(5-(1H-Imidazol-1-yl)-3-methyl-1-phenyl-1H-pyrazol-4-yl)-6-amino-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and its Derivatives. Asian Journal of Chemistry, 35(7):1616-1624. (2023).
- P Sharma, R Patel, RR Koshti, A Vyas, & CB Sangani. Synthesis, Characterization, Biological Evaluation, DFT Studies and Molecular Docking of Novel 12-(2-(1H-Imidazol-1-yl)quinolin-3-yl)-8-methyl-2,3,4,12-tetrahydro-1H-benzo[4,5]thiazolo[2,3-b]quinazolin-1-one and its Derivatives. Asian Journal of Chemistry, 35(9):2092-2102. (2023).
References
T. S. Ibrahim, M. M. Hawwas , E. Taher , N. A. Alhakamy, M A. Alfaleh , M.Elagawany , Bahaa Elgendy, Gamal M. Zayed, Mamdouh F.A. Mohamed , Zakaria K. Abdel-Samii , Y. A.M.M. Elshaier, Bioorganic Chemistry , 105, 104352 (2020)
R.L. Siegel, K.D. Miller, H.E. Fuchs and A. Jemal, CA Cancer J. Clin., 71, 7 (2021); https://doi.org/10.3322/caac.21654
M. Morales-Cruz, Y. Delgado, B Castillo, C. M Figueroa, A. M Molina, A. Torres, M. Milián, K. Griebenow, Drug Design, Development and Therapy, 13 3753–3772 (2019)
. M. Tateishi and T. Ishida, Cancer Res., 50, 7077 (1990).
A. Ayati, et al. Bioorganic Chemistry 99 (2020) 103811 https://doi.org/10.1016/j.bioorg.2020.103811
. S.W. White, J. Zheng, Y.M. Zhang and C.O. Rock, Annu. Rev. Biochem., 74, 791 (2005); https://doi.org/10.1146/annurev.biochem.74.082803.133524
. K.S. Kolibaba and B.J. Druker, Biochim. Biophys. Acta, 1333, F217 (1997);
. Meuillet/Bremer, Pediatr Neurosurg 1998;29:1–13
. Sequist, The Oncologist 2007;12:325–330
M.C. Mandewale et al. / Beni-Suef Univ. J. Basic Appl. Sci. 6 (2017) 354–361
Xiang Wen • Shi-Ben Wang • Da-Chuan Liu • Guo-Hua Gong • Zhe-Shan Quan , Med Chem Res DOI 10.1007/s00044-015-1323-y
R. Kaur and K. Kumar, European Journal of Medicinal Chemistry 215 (2021) 113220
Zhang, F.; et al. Bioorg. Med. Chem. Lett. (2013), http://dx.doi.org/10.1016/j.bmcl.2013.11.079 [14] White et al Annu. Rev. Biochem. 2005. 74:791–831 doi:10.1146/annurev.biochem.74.082803.133524
Ying-Jie Lu, Yong-Mei Zhang, and Charles O. Rock, Biochem. Cell Biol. 82: 145–155 (2004) doi: 10.1139/O03-076
Ming Chen* and Jiaoti Huang*, Precision Clinical Medicine, 2(3), 2019, 183–191 doi: 10.1093/pcmedi/pbz017
Y.-T. Wang, T.-Q. Shi, J. Fu, H.-L. Zhu, European Journal of Medicinal Chemistry (2019), doi: https:// doi.org/10.1016/j.ejmech.2019.03.026.
K.S. Gajiwala et al. / FEBS Letters 583 (2009) 2939–2946 doi:10.1016/j.febslet.2009.08.001
M. Negi, P.A. Chawla, A. Faruk, V. Chawla, Bioorganic Chemistry (2020), doi: https://doi.org/10.1016/j.bioorg.2020.104315
A. Mermer et al., Bioorganic Chemistry 114 (2021) 105076 https://doi.org/10.1016/j.bioorg.2021.105076
P. Yadav and K. Shah Bioorganic Chemistry 109 (2021) 104639 https://doi.org/10.1016/j.bioorg.2021.104639
J. Drogosz-Stachowicz, et al Chemico-Biological Interactions 320 (2020) 109005 https://doi.org/10.1016/j.cbi.2020.109005
K.D. Katariya, S.R. Shah, D. Reddy, Bioorganic Chemistry (2019), doi: https://doi.org/10.1016/j.bioorg.2019.103406
Robert Musiol, Expert Opinion on Drug Discovery, DOI: 10.1080/17460441.2017.1319357
M.C. Mandewale etal., Beni-Suef Univ. J. Basic Appl. Sci. 6 (2017) 354–361 http://dx.doi.org/10.1016/j.bjbas.2017.07.005
Teng, P., Li, C., Peng, Z., Marie Vanderschouw, A., Nimmagadda, A., Su, M., Li, Y., Sun, X., Cai, J., Bioorganic & Medicinal Chemistry (2018), doi: https://doi.org/10.1016/j.bmc.2018.05.031
Xiao Z, Lei F, Chen X, et al. Arch Pharm Chem Life Sci. 2018;1–11 DOI: 10.1002/ardp.201700407
D. Mantu et al. J Enzyme Inhib Med Chem, Early Online: 1–8
DOI: 10.1080/14756366.2016.1190711
A. Irfan et al. Journal of Enzyme Inhibition and Medicinal Chemistry 2020, VOL. 35, NO. 1, 265–279 https://doi.org/10.1080/14756366.2019.1698036
Haroun et al. Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 1
DOI: 10.2174/1568026618666180206101814
N. C. Desai, D. Pandya, D. Vaja, Med Chem Res DOI 10.1007/s00044-017-2040-5
Singh et al., International Current Pharmaceutical Journal 2012, 1(5): 119-127 http://www.icpjonline.com/documents/Vol1Issue5/05.pdf
Ruhi Ali and Nadeem Siddiqui Journal of Chemistry Volume 2013, Article ID 345198, http://dx.doi.org/10.1155/2013/345198
R Kurtaran, S Odabaşıoğlu, A Azizoglu, H Kara, O Atakol, Polyhedron, 26, 5069,
(2007).
Mahmoud WH, Omar MM, Sayed FN, Mohamed GG. Synthesis, characterization,
spectroscopic and theoratical studies of transition metal complexes of new nano Schiff base
derived from L-histidine and 2-acetylferrocene and evaluation of biological and anticancer
activities. Appl. Organomet. Chem 32(7):4386-4390. (2018).
Neese, F. The ORCA program system, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012;2, 73–78.
Neese, F. Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev.: Comput. Mol. Sci.2017; 8, e1327.
P Sharma, R Patel, RR Koshti, A Vyas, & CB Sangani. Synthesis, Biological Evaluation and Molecular Modeling of Pyrazole-Phthalazine Hybrid Derivatives Bearing 2-Aryloxy Quinoline Nucleus and their Computational Quantum Mechanical Modelling. Asian Journal of Chemistry, 34(12), 3169-3182. (2022).
R Patel, P Sharma, RR Koshti, A Vyas, & CB Sangani. Synthesis, Characterization and molecular modeling of pyrazole-quinoline hybrids as a new class of antibacterial, antimicrobial, anticancer agents and DFT study. Asian Journal of Chemistry, 35(4), 828-838. (2023).
P Sharma, R Patel, RR Koshti, A Vyas, & CB Sangani. Synthesis, Synthesis, Biological Evaluation and Molecular Modeling of Novel Ethyl 2′-Amino-5′-oxo-1′-(4-phenylthiazol-2-yl)-2-(phenylthio)-1′,4′,5′,6′,7′,8′-hexahydro-[3,4′-biquinoline]-3′-carboxylate Derivatives and their Computational Quantum Mechanical Modelling. Asian Journal of Chemistry, 35(6), 1320-1332. (2023).
R Patel, P Sharma, RR Koshti, A Vyas, & CB Sangani. Synthesis, Synthesis, Biological Evaluation, DFT Studies and Molecular Docking of Novel 4-(5-(1H-Imidazol-1-yl)-3-methyl-1-phenyl-1H-pyrazol-4-yl)-6-amino-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and its Derivatives. Asian Journal of Chemistry, 35(7):1616-1624. (2023).
P Sharma, R Patel, RR Koshti, A Vyas, & CB Sangani. Synthesis, Characterization, Biological Evaluation, DFT Studies and Molecular Docking of Novel 12-(2-(1H-Imidazol-1-yl)quinolin-3-yl)-8-methyl-2,3,4,12-tetrahydro-1H-benzo[4,5]thiazolo[2,3-b]quinazolin-1-one and its Derivatives. Asian Journal of Chemistry, 35(9):2092-2102. (2023).