Copyright (c) 2024 S. Chetana, Halligudru Guddappa , Sanjay Upadhyay , Naveen Chandra Joshi, Niraj Kumar, Priyvart Choudhary, Vikas N. Thakur
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic and Oxygen Evolution Reaction (OER) of Novel Supercritical Fluid Synthesized Nanobiocomposite MoS2/Silk G
Corresponding Author(s) : S. Chetana
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
The photocatalytic activity and oxygen evolution reaction (OER) of MoS2 and silk graphene (silk G) composite synthesized using supercritical fluids and chemical vapor deposition (CVD) methods were investigated for their potential application in photocatalysis. This material was subjected to characterize by XRD, TEM, SEM and FTIR techniques to demonstrate that MoS2/silk G composite still existed in the supercritical fluids methods obtained MoS2 & MoS2/silk G. The optical features of MoS2 was improved by introduction of silk G, which inturn caused shift in band gap from 1.65 to 1.85 eV. Within visible region, creation of high electron-hole pairs is possible by adequate band gap modifications. The fast movement of photo-induced charge carrier can be enhanced by silk G as they decrease the recombination activity. Additionally, the MoS2/silk G shows high oxygen evolution reaction with low Tafel slope of 157.2 mV dec-1 and low overpotential of 603 mV at a current density of 10 mA cm-2. The present study signifies that with addition of silk G in the MoS2 host improved the photocatalytic activity by 13% and electrocatalytic activity by nearly 5% compared to bare MoS2 nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Dahiya, M. Hariram, M. Kumar, A. Jain and D. Sarkar, Coord. Chem. Rev., 451, 214265 (2022); https://doi.org/10.1016/j.ccr.2021.214265
- K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim and H.W. Jang, Nano-Micro Lett., 14, 58 (2022); https://doi.org/10.1007/s40820-021-00784-3
- J. Hong, X. Chen, P. Li, M. Koshino, S. Li, H. Xu, Z. Hu, F. Ding and K. Suenaga, Adv. Mater., 34, 2200643 (2022); https://doi.org/10.1002/adma.202200643
- K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim and H.W. Jang, Nano-Micro Lett., 14, 58 (2022); https://doi.org/10.1007/s40820-021-00784-3
- G. Halligudra, C.C. Paramesh, R. Gururaj, D. Rangappa, A. Giridasappa, C. Sabbanahalli, A.K.C. Siddegowda, A.K.M. Raghunathareddy and P.D. Shivaramu, Ceram. Int., 48, 35698 (2022); https://doi.org/10.1016/j.ceramint.2022.06.188
- R. Mudike, C. Sabbanahalli, J.B. Sriramoju, A. Bheemaraju, G. Halligudra, M. Muniyappa, M.P. Narayanaswamy, A.K. Cs, P.D. Shivaramu and D. Rangappa, Mater. Res. Bull., 146, 111606 (2022); https://doi.org/10.1016/j.materresbull.2021.111606
- J.B. Sriramoju, M. Muniyappa, N.R. Marilingaiah, C. Sabbanahalli, M. Shetty, R. Mudike, C.P. Chitrabanu, P.D. Shivaramu, G. Nagaraju, K.S. Rangappa, C.S. Ananda Kumar and D. Rangappa, Ceram. Int., 47, 10321 (2021); https://doi.org/10.1016/j.ceramint.2020.12.014
- S. Upadhyay and O.P. Pandey, J. Energy Storage, 40, 102809 (2021); https://doi.org/10.1016/j.est.2021.102809
- S. Upadhyay and O.P. Pandey, J. Power Sources, 535, 231450 (2022); https://doi.org/10.1016/j.jpowsour.2022.231450
- S. Wang, L. Liao, Z. Shi, J. Xiao, Q. Gao, Y. Zhang, B. Liu and Y. Tang, ChemElectroChem, 3, 2110 (2016); https://doi.org/10.1002/celc.201600325
- S. Upadhyay and O.P. Pandey, Electrochim. Acta, 412, 140109 (2022); https://doi.org/10.1016/j.electacta.2022.140109
- S. Upadhyay and O.P. Pandey, J. Electrochem. Soc., 169, 016511 (2022); https://doi.org/10.1149/1945-7111/ac4a52
- X. Pang, T. Wu, Y. Gu, D. Wang, X. Che, D. Sun and F. Huang, Chem. Commun., 56, 9036 (2020); https://doi.org/10.1039/D0CC03282D
- P. Baskaran, K.D. Nisha, S. Harish, H. Ikeda, J. Archana and M. Navaneethan, J. Alloys Compd., 894, 162166 (2022); https://doi.org/10.1016/j.jallcom.2021.162166
- C. Sabanhalli, K. Roy, M.P. Kumar, R. Mudike, C.S. Ananda Kumar, P.D. Shivaramu, K.G.B. Kumar, N. Basavegowda and D. Rangappa, Ceram. Int., 48, 35860 (2022); https://doi.org/10.1016/j.ceramint.2022.08.104
- J. Swapnalin, P. Banerjee, C. Sabbanahalli, D. Rangappa and K.K. Kondamareddy, Computational Techniques on Optical Properties of Metal-Oxide Semiconductors, In: Optical Properties and Applications of Semiconductors, CRC Press, pp. 155–166 (2022).
- P. Choudhary, A. Pathak, P. Kumar, S. Chetana and N. Sharma, Biomass Conv. Bioref. (2022); https://doi.org/10.1007/s13399-022-03145-1
- N.C. Joshi, B.S. Rawat, H. Bisht, V. Gajraj, N. Kumar, S. Chetana and P. Gururani, Synth. Met., 289, 117132 (2022); https://doi.org/10.1016/j.synthmet.2022.117132
- Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Q. Lu, Y. Yu, Q. Ma, B. Chen and H. Zeng, Adv. Mater., 28, 1917 (2016); https://doi.org/10.1002/adma.201503270
- A. Joseph and P.M. Aneesh, Mater. Res. Bull., 146, 111623 (2022); https://doi.org/10.1016/j.materresbull.2021.111623
- S. Palchoudhury, K. Ramasamy and A. Gupta, Nanoscale Adv., 2, 3069 (2020); https://doi.org/10.1039/D0NA00399A
- J. Zhou, Y. Cheng and Y. Zhu, Adv. Mater. Interfaces, 9, 2102334 (2022); https://doi.org/10.1002/admi.202102334
- G. Rani, J. Rajesh Banu and K.N. Yogalakshmi, Electrode Modification and its Application in Microbial Electrolysis Cell, In: Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability, Elsevier, pp. 339-357 (2022); https://doi.org/10.1016/B978-0-323-90765-1.00018-6
- M. Kumar, B.E. Kumara Swamy, S. Reddy, W. Zhao, S. Chetana and V. Gowrav Kumar, J. Electroanal. Chem., 835, 96 (2019); https://doi.org/10.1016/j.jelechem.2019.01.019
- F.M. Sapountzi, J.M. Gracia, C.J. (Kees-Jan) Weststrate, H.O.A. Fredriksson and J.W. (Hans) Niemantsverdriet, Progr. Energy Combust. Sci., 58, 1 (2017). https://doi.org/10.1016/j.pecs.2016.09.001
- M. Shastri, M. Shetty, N. Rani, M. Muniyappa, V. Gangaraju, M.S. Sree, V. Gangaraju, C. Sabanhalli, S.V. Lokesh, P.D. Shivaramu and D. Rangappa, Ceram. Int., 47, 14790 (2021); https://doi.org/10.1016/j.ceramint.2020.10.215
- W.S. Su and C.H. Yeh, Diamond Rel. Mater., 124, 108897 (2022); https://doi.org/10.1016/j.diamond.2022.108897
- B. Han and Y.H. Hu, J. Phys. Chem. C, 119, 18927 (2015); https://doi.org/10.1021/acs.jpcc.5b04894
- N. Kumar, A.S. Bhadwal, B. Mizaikoff, S. Singh and C. Kranz, Sens. Biosensing Res., 24, 100288 (2019); https://doi.org/10.1016/j.sbsr.2019.100288
- P.O. Agboola and I. Shakir, J. Mater. Res. Technol., 18, 4303 (2022); https://doi.org/10.1016/j.jmrt.2022.04.109
- D. Liu, Z. Lv, J. Dang, W. Ma, K. Jian, M. Wang, D. Huang and W. Tian, Inorg. Chem., 60, 9932 (2021); https://doi.org/10.1021/acs.inorgchem.1c01193
- E. Benavente, F. Durán, C. Sotomayor-Torres and G. González, J. Phys. Chem. Solids, 113, 119 (2018); https://doi.org/10.1016/j.jpcs.2017.10.027
- Q. Liu, H. Zhu, Q. Ma, M. Liu, B. Wang, C. Tang, Y. Wang, Q. Wu, X. Wang and Z. Hu, FlatChem, 26, 100212 (2021); https://doi.org/10.1016/j.flatc.2020.100212
- H. Xie and X. Xiong, J. Environ. Chem. Eng., 5, 1150 (2017); https://doi.org/10.1016/j.jece.2017.01.044
- M. Nishita, S.-Y. Park, T. Nishio, K. Kamizaki, Z.C. Wang, K. Tamada, T. Takumi, R. Hashimoto, H. Otani, G.J. Pazour, V.W. Hsu and Y. Minami, Sci. Rep., 7, 1 (2017); https://doi.org/10.1038/s41598-016-0028-x
- S. Chetana, V.N. Thakur, N. Kumar, N.C. Joshi, S. Upadhyay, K. Roy, K.G.B. Kumar and D. Rangappa, J. Mater. Sci. Mater. Electron., 34, 1886 (2023); https://doi.org/10.1007/s10854-023-11267-z
- M. Shetty, C. Schüßler, M. Shastri, C. Sabbanahalli, C.P. Chitrabhanu, M. Murthy, S. Jagadeesh Babu, T. Tomai, K.S. Anantharaju, P.D. Shivaramu and D. Rangappa, Ceram. Int., 47, 10274 (2021); https://doi.org/10.1016/j.ceramint.2020.12.061
- L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang and P. Yang, Sci. Rep., 7, 43116 (2017); https://doi.org/10.1038/srep43116
- L. Ge, C. Han, X. Xiao and L. Guo, Int. J. Hydrogen Energy, 38, 6960 (2013); https://doi.org/10.1016/j.ijhydene.2013.04.006
- H.M. El Sharkawy, A.S. Dhmees, A.R. Tamman, S.M. El Sabagh, R.M. Aboushahba and N.K. Allam, J. Energy Storage, 27, 101078 (2020); https://doi.org/10.1016/j.est.2019.101078
- J.H. Fan, P. Gao, A.M. Zhang, B.R. Zhu, H.L. Zeng, X.D. Cui, R. He and Q.M. Zhang, J. Appl. Phys., 115, 053527 (2014); https://doi.org/10.1063/1.4862859
- S. Upadhyay and O.P. Pandey, Int. J. Hydrogen Energy, 45, 27114 (2020); https://doi.org/10.1016/j.ijhydene.2020.07.069
- L. González-Reyes, I. Hernández-Perez, L. Díaz-Barriga Arceo and A. Manzo-Robledo, Mater. Sci. Forum, 691, 105 (2011); https://doi.org/10.4028/www.scientific.net/MSF.691.105
- L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu and J. Cho, Angew. Chem. Int. Ed., 60, 18821 (2021); https://doi.org/10.1002/anie.202106631
- P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu, Y. Xie, P. Z. Chen, K. Xu, T. P. Zhou, Y. Tong, J. C. Wu, X. L. Lu, H. Ding, C. Z. Wu and Y. Xie, Angew. Chem. Int. Ed., 55, 2488 (2016); https://doi.org/10.1002/anie.201511032
- R.A. Mir and O.P. Pandey, Appl. Phys. Lett., 118, 253902 (2021); https://doi.org/10.1063/5.0057082
- R. Vinodh, C. Deviprasath, C. V. V. Muralee Gopi, V. G. Raghavendra Kummara, R. Atchudan, T. Ahamad, H.J. Kim and M. Yi, Int. J. Hydrogen Energy, 45, 28337 (2020); https://doi.org/10.1016/j.ijhydene.2020.07.194
- I. Arulraj and D.C. Trivedi, Int. J. Hydrogen Energy, 14, 893 (1989); https://doi.org/10.1016/0360-3199(89)90076-1
- J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang and L. Guo, Adv. Energy Mater., 5, 1401880 (2015); https://doi.org/10.1002/aenm.201401880
- J. Masud, S. Umapathi, N. Ashokaan and M. Nath, J. Mater. Chem. A, 4, 9750 (2016); https://doi.org/10.1039/C6TA04025J
- M. Jahan, Z. Liu and K.P. Loh, Adv. Funct. Mater., 23, 5363 (2013); https://doi.org/10.1002/adfm.201300510
References
Y. Dahiya, M. Hariram, M. Kumar, A. Jain and D. Sarkar, Coord. Chem. Rev., 451, 214265 (2022); https://doi.org/10.1016/j.ccr.2021.214265
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim and H.W. Jang, Nano-Micro Lett., 14, 58 (2022); https://doi.org/10.1007/s40820-021-00784-3
J. Hong, X. Chen, P. Li, M. Koshino, S. Li, H. Xu, Z. Hu, F. Ding and K. Suenaga, Adv. Mater., 34, 2200643 (2022); https://doi.org/10.1002/adma.202200643
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim and H.W. Jang, Nano-Micro Lett., 14, 58 (2022); https://doi.org/10.1007/s40820-021-00784-3
G. Halligudra, C.C. Paramesh, R. Gururaj, D. Rangappa, A. Giridasappa, C. Sabbanahalli, A.K.C. Siddegowda, A.K.M. Raghunathareddy and P.D. Shivaramu, Ceram. Int., 48, 35698 (2022); https://doi.org/10.1016/j.ceramint.2022.06.188
R. Mudike, C. Sabbanahalli, J.B. Sriramoju, A. Bheemaraju, G. Halligudra, M. Muniyappa, M.P. Narayanaswamy, A.K. Cs, P.D. Shivaramu and D. Rangappa, Mater. Res. Bull., 146, 111606 (2022); https://doi.org/10.1016/j.materresbull.2021.111606
J.B. Sriramoju, M. Muniyappa, N.R. Marilingaiah, C. Sabbanahalli, M. Shetty, R. Mudike, C.P. Chitrabanu, P.D. Shivaramu, G. Nagaraju, K.S. Rangappa, C.S. Ananda Kumar and D. Rangappa, Ceram. Int., 47, 10321 (2021); https://doi.org/10.1016/j.ceramint.2020.12.014
S. Upadhyay and O.P. Pandey, J. Energy Storage, 40, 102809 (2021); https://doi.org/10.1016/j.est.2021.102809
S. Upadhyay and O.P. Pandey, J. Power Sources, 535, 231450 (2022); https://doi.org/10.1016/j.jpowsour.2022.231450
S. Wang, L. Liao, Z. Shi, J. Xiao, Q. Gao, Y. Zhang, B. Liu and Y. Tang, ChemElectroChem, 3, 2110 (2016); https://doi.org/10.1002/celc.201600325
S. Upadhyay and O.P. Pandey, Electrochim. Acta, 412, 140109 (2022); https://doi.org/10.1016/j.electacta.2022.140109
S. Upadhyay and O.P. Pandey, J. Electrochem. Soc., 169, 016511 (2022); https://doi.org/10.1149/1945-7111/ac4a52
X. Pang, T. Wu, Y. Gu, D. Wang, X. Che, D. Sun and F. Huang, Chem. Commun., 56, 9036 (2020); https://doi.org/10.1039/D0CC03282D
P. Baskaran, K.D. Nisha, S. Harish, H. Ikeda, J. Archana and M. Navaneethan, J. Alloys Compd., 894, 162166 (2022); https://doi.org/10.1016/j.jallcom.2021.162166
C. Sabanhalli, K. Roy, M.P. Kumar, R. Mudike, C.S. Ananda Kumar, P.D. Shivaramu, K.G.B. Kumar, N. Basavegowda and D. Rangappa, Ceram. Int., 48, 35860 (2022); https://doi.org/10.1016/j.ceramint.2022.08.104
J. Swapnalin, P. Banerjee, C. Sabbanahalli, D. Rangappa and K.K. Kondamareddy, Computational Techniques on Optical Properties of Metal-Oxide Semiconductors, In: Optical Properties and Applications of Semiconductors, CRC Press, pp. 155–166 (2022).
P. Choudhary, A. Pathak, P. Kumar, S. Chetana and N. Sharma, Biomass Conv. Bioref. (2022); https://doi.org/10.1007/s13399-022-03145-1
N.C. Joshi, B.S. Rawat, H. Bisht, V. Gajraj, N. Kumar, S. Chetana and P. Gururani, Synth. Met., 289, 117132 (2022); https://doi.org/10.1016/j.synthmet.2022.117132
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Q. Lu, Y. Yu, Q. Ma, B. Chen and H. Zeng, Adv. Mater., 28, 1917 (2016); https://doi.org/10.1002/adma.201503270
A. Joseph and P.M. Aneesh, Mater. Res. Bull., 146, 111623 (2022); https://doi.org/10.1016/j.materresbull.2021.111623
S. Palchoudhury, K. Ramasamy and A. Gupta, Nanoscale Adv., 2, 3069 (2020); https://doi.org/10.1039/D0NA00399A
J. Zhou, Y. Cheng and Y. Zhu, Adv. Mater. Interfaces, 9, 2102334 (2022); https://doi.org/10.1002/admi.202102334
G. Rani, J. Rajesh Banu and K.N. Yogalakshmi, Electrode Modification and its Application in Microbial Electrolysis Cell, In: Scaling Up of Microbial Electrochemical Systems: From Reality to Scalability, Elsevier, pp. 339-357 (2022); https://doi.org/10.1016/B978-0-323-90765-1.00018-6
M. Kumar, B.E. Kumara Swamy, S. Reddy, W. Zhao, S. Chetana and V. Gowrav Kumar, J. Electroanal. Chem., 835, 96 (2019); https://doi.org/10.1016/j.jelechem.2019.01.019
F.M. Sapountzi, J.M. Gracia, C.J. (Kees-Jan) Weststrate, H.O.A. Fredriksson and J.W. (Hans) Niemantsverdriet, Progr. Energy Combust. Sci., 58, 1 (2017). https://doi.org/10.1016/j.pecs.2016.09.001
M. Shastri, M. Shetty, N. Rani, M. Muniyappa, V. Gangaraju, M.S. Sree, V. Gangaraju, C. Sabanhalli, S.V. Lokesh, P.D. Shivaramu and D. Rangappa, Ceram. Int., 47, 14790 (2021); https://doi.org/10.1016/j.ceramint.2020.10.215
W.S. Su and C.H. Yeh, Diamond Rel. Mater., 124, 108897 (2022); https://doi.org/10.1016/j.diamond.2022.108897
B. Han and Y.H. Hu, J. Phys. Chem. C, 119, 18927 (2015); https://doi.org/10.1021/acs.jpcc.5b04894
N. Kumar, A.S. Bhadwal, B. Mizaikoff, S. Singh and C. Kranz, Sens. Biosensing Res., 24, 100288 (2019); https://doi.org/10.1016/j.sbsr.2019.100288
P.O. Agboola and I. Shakir, J. Mater. Res. Technol., 18, 4303 (2022); https://doi.org/10.1016/j.jmrt.2022.04.109
D. Liu, Z. Lv, J. Dang, W. Ma, K. Jian, M. Wang, D. Huang and W. Tian, Inorg. Chem., 60, 9932 (2021); https://doi.org/10.1021/acs.inorgchem.1c01193
E. Benavente, F. Durán, C. Sotomayor-Torres and G. González, J. Phys. Chem. Solids, 113, 119 (2018); https://doi.org/10.1016/j.jpcs.2017.10.027
Q. Liu, H. Zhu, Q. Ma, M. Liu, B. Wang, C. Tang, Y. Wang, Q. Wu, X. Wang and Z. Hu, FlatChem, 26, 100212 (2021); https://doi.org/10.1016/j.flatc.2020.100212
H. Xie and X. Xiong, J. Environ. Chem. Eng., 5, 1150 (2017); https://doi.org/10.1016/j.jece.2017.01.044
M. Nishita, S.-Y. Park, T. Nishio, K. Kamizaki, Z.C. Wang, K. Tamada, T. Takumi, R. Hashimoto, H. Otani, G.J. Pazour, V.W. Hsu and Y. Minami, Sci. Rep., 7, 1 (2017); https://doi.org/10.1038/s41598-016-0028-x
S. Chetana, V.N. Thakur, N. Kumar, N.C. Joshi, S. Upadhyay, K. Roy, K.G.B. Kumar and D. Rangappa, J. Mater. Sci. Mater. Electron., 34, 1886 (2023); https://doi.org/10.1007/s10854-023-11267-z
M. Shetty, C. Schüßler, M. Shastri, C. Sabbanahalli, C.P. Chitrabhanu, M. Murthy, S. Jagadeesh Babu, T. Tomai, K.S. Anantharaju, P.D. Shivaramu and D. Rangappa, Ceram. Int., 47, 10274 (2021); https://doi.org/10.1016/j.ceramint.2020.12.061
L. Li, H. Bi, S. Gai, F. He, P. Gao, Y. Dai, X. Zhang, D. Yang, M. Zhang and P. Yang, Sci. Rep., 7, 43116 (2017); https://doi.org/10.1038/srep43116
L. Ge, C. Han, X. Xiao and L. Guo, Int. J. Hydrogen Energy, 38, 6960 (2013); https://doi.org/10.1016/j.ijhydene.2013.04.006
H.M. El Sharkawy, A.S. Dhmees, A.R. Tamman, S.M. El Sabagh, R.M. Aboushahba and N.K. Allam, J. Energy Storage, 27, 101078 (2020); https://doi.org/10.1016/j.est.2019.101078
J.H. Fan, P. Gao, A.M. Zhang, B.R. Zhu, H.L. Zeng, X.D. Cui, R. He and Q.M. Zhang, J. Appl. Phys., 115, 053527 (2014); https://doi.org/10.1063/1.4862859
S. Upadhyay and O.P. Pandey, Int. J. Hydrogen Energy, 45, 27114 (2020); https://doi.org/10.1016/j.ijhydene.2020.07.069
L. González-Reyes, I. Hernández-Perez, L. Díaz-Barriga Arceo and A. Manzo-Robledo, Mater. Sci. Forum, 691, 105 (2011); https://doi.org/10.4028/www.scientific.net/MSF.691.105
L. Zhang, H. Jang, H. Liu, M. G. Kim, D. Yang, S. Liu, X. Liu and J. Cho, Angew. Chem. Int. Ed., 60, 18821 (2021); https://doi.org/10.1002/anie.202106631
P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu, Y. Xie, P. Z. Chen, K. Xu, T. P. Zhou, Y. Tong, J. C. Wu, X. L. Lu, H. Ding, C. Z. Wu and Y. Xie, Angew. Chem. Int. Ed., 55, 2488 (2016); https://doi.org/10.1002/anie.201511032
R.A. Mir and O.P. Pandey, Appl. Phys. Lett., 118, 253902 (2021); https://doi.org/10.1063/5.0057082
R. Vinodh, C. Deviprasath, C. V. V. Muralee Gopi, V. G. Raghavendra Kummara, R. Atchudan, T. Ahamad, H.J. Kim and M. Yi, Int. J. Hydrogen Energy, 45, 28337 (2020); https://doi.org/10.1016/j.ijhydene.2020.07.194
I. Arulraj and D.C. Trivedi, Int. J. Hydrogen Energy, 14, 893 (1989); https://doi.org/10.1016/0360-3199(89)90076-1
J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang and L. Guo, Adv. Energy Mater., 5, 1401880 (2015); https://doi.org/10.1002/aenm.201401880
J. Masud, S. Umapathi, N. Ashokaan and M. Nath, J. Mater. Chem. A, 4, 9750 (2016); https://doi.org/10.1039/C6TA04025J
M. Jahan, Z. Liu and K.P. Loh, Adv. Funct. Mater., 23, 5363 (2013); https://doi.org/10.1002/adfm.201300510