Copyright (c) 2024 Ari Hardianto, Winni Ramadhani, Ivani Nurjannah, Lucy Adinisa, Anni Anggraeni, Solihudin, Husain Sumeru, Fajriana Nurrusyda, Uji Pratomo, Husein Bahti, Toto Subroto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Harnessing Agricultural Byproducts: Rice Husk-Derived Adsorbents for Heavy Metal Remediation in Water
Corresponding Author(s) : Ari Hardianto
Asian Journal of Chemistry,
Vol. 36 No. 3 (2024): Vol 36 Issue 3, 2024
Abstract
This study investigates the removal of heavy metals Pb(II), Cr(VI) and Ni(II) from water using rice husk-derived materials. The adsorption effectiveness of rice husk charcoal and its refined forms, including carbon-silica, silica, and carbon, was assessed after activation with HCl. The results revealed that activation improves the adsorption of Pb(II) and Cr(VI), particularly at lower concentrations, due to increased surface area and active sites. However, the influence of activation on Ni(II) is less significant. This research highlights the potential of using eco-friendly, cost-effective rice husk-derived adsorbents for water purification, offering a sustainable solution to heavy metal contamination and agricultural waste management.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
- M. Zaynab, R. Al-Yahyai, A. Ameen, Y. Sharif, L. Ali, M. Fatima, K.A. Khan and S. Li, J. King Saud Univ. Sci., 34, 101653 (2022); https://doi.org/10.1016/j.jksus.2021.101653
- K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf and K.O. Rahman, RSC Adv., 13, 17595 (2023); https://doi.org/10.1039/D3RA00723E
- N.A.A. Qasem, R.H. Mohammed and D.U. Lawal, npj Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
- K.K. Sodhi, L.C. Mishra, C.K. Singh and M. Kumar, Curr. Res. Microb. Sci., 3, 100166 (2022); https://doi.org/10.1016/j.crmicr.2022.100166
- M. Ahmaruzzaman and V.K. Gupta, Ind. Eng. Chem. Res., 50, 13589 (2011); https://doi.org/10.1021/ie201477c
- Z. Shamsollahi and A. Partovinia, J. Environ. Manage., 246, 314 (2019); https://doi.org/10.1016/j.jenvman.2019.05.145
- J.K. Sahoo, A. Hota, C. Singh, S. Barik, N. Sahu, S.K. Sahoo, M.K. Sahu and H. Sahoo, Int. J. Environ. Anal. Chem., 103, 9131 (2021); https://doi.org/10.1080/03067319.2021.2003349
- T. Mitra, N. Bar and S.K. Das, SN Appl. Sci., 1, 486 (2019); https://doi.org/10.1007/s42452-019-0513-5
- S. He, Z. Li, X. Shi, H. Yang, L. Gong and X. Cheng, Adv. Powder Technol., 26, 537 (2015); https://doi.org/10.1016/j.apt.2015.01.002
- M. Zabihi, A. Ahmadpour and A.H. Asl, J. Hazard. Mater., 167, 230 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.108
- N. Saha, L. Das, P. Das, A. Bhowal and C. Bhattacharjee, Biomass Convers. Biorefin., 13, 11023 (2023); https://doi.org/10.1007/s13399-021-01996-8
- K. Le Van and T.T. Luong Thi, Prog. Nat. Sci., 24, 191 (2014); https://doi.org/10.1016/j.pnsc.2014.05.012
- U. Kalapathy, A. Proctor and J. Shultz, Bioresour. Technol., 73, 257 (2000); https://doi.org/10.1016/S0960-8524(99)00127-3
- M. Fertani-Gmati, K. Brahim, I. Khattech and M. Jemal, Thermochim. Acta, 594, 58 (2014); https://doi.org/10.1016/j.tca.2014.09.003
- J.M. Rimsza, R.E. Jones and L.J. Criscenti, J. Colloid Interface Sci., 516, 128 (2018); https://doi.org/10.1016/j.jcis.2018.01.049
- T. Jesionowski, Powder Technol., 127, 56 (2002); https://doi.org/10.1016/S0032-5910(02)00093-1
- H. Yang, J. Liu, B. Pang and J. Chi, J. Phys. Conf. Ser., 1774, 012067 (2021); https://doi.org/10.1088/1742-6596/1774/1/012067
References
M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair and M. Sadeghi, Front Pharmacol., 12, 643972 (2021); https://doi.org/10.3389/fphar.2021.643972
M. Zaynab, R. Al-Yahyai, A. Ameen, Y. Sharif, L. Ali, M. Fatima, K.A. Khan and S. Li, J. King Saud Univ. Sci., 34, 101653 (2022); https://doi.org/10.1016/j.jksus.2021.101653
K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf and K.O. Rahman, RSC Adv., 13, 17595 (2023); https://doi.org/10.1039/D3RA00723E
N.A.A. Qasem, R.H. Mohammed and D.U. Lawal, npj Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
K.K. Sodhi, L.C. Mishra, C.K. Singh and M. Kumar, Curr. Res. Microb. Sci., 3, 100166 (2022); https://doi.org/10.1016/j.crmicr.2022.100166
M. Ahmaruzzaman and V.K. Gupta, Ind. Eng. Chem. Res., 50, 13589 (2011); https://doi.org/10.1021/ie201477c
Z. Shamsollahi and A. Partovinia, J. Environ. Manage., 246, 314 (2019); https://doi.org/10.1016/j.jenvman.2019.05.145
J.K. Sahoo, A. Hota, C. Singh, S. Barik, N. Sahu, S.K. Sahoo, M.K. Sahu and H. Sahoo, Int. J. Environ. Anal. Chem., 103, 9131 (2021); https://doi.org/10.1080/03067319.2021.2003349
T. Mitra, N. Bar and S.K. Das, SN Appl. Sci., 1, 486 (2019); https://doi.org/10.1007/s42452-019-0513-5
S. He, Z. Li, X. Shi, H. Yang, L. Gong and X. Cheng, Adv. Powder Technol., 26, 537 (2015); https://doi.org/10.1016/j.apt.2015.01.002
M. Zabihi, A. Ahmadpour and A.H. Asl, J. Hazard. Mater., 167, 230 (2009); https://doi.org/10.1016/j.jhazmat.2008.12.108
N. Saha, L. Das, P. Das, A. Bhowal and C. Bhattacharjee, Biomass Convers. Biorefin., 13, 11023 (2023); https://doi.org/10.1007/s13399-021-01996-8
K. Le Van and T.T. Luong Thi, Prog. Nat. Sci., 24, 191 (2014); https://doi.org/10.1016/j.pnsc.2014.05.012
U. Kalapathy, A. Proctor and J. Shultz, Bioresour. Technol., 73, 257 (2000); https://doi.org/10.1016/S0960-8524(99)00127-3
M. Fertani-Gmati, K. Brahim, I. Khattech and M. Jemal, Thermochim. Acta, 594, 58 (2014); https://doi.org/10.1016/j.tca.2014.09.003
J.M. Rimsza, R.E. Jones and L.J. Criscenti, J. Colloid Interface Sci., 516, 128 (2018); https://doi.org/10.1016/j.jcis.2018.01.049
T. Jesionowski, Powder Technol., 127, 56 (2002); https://doi.org/10.1016/S0032-5910(02)00093-1
H. Yang, J. Liu, B. Pang and J. Chi, J. Phys. Conf. Ser., 1774, 012067 (2021); https://doi.org/10.1088/1742-6596/1774/1/012067