Copyright (c) 2024 S. Manjula, K. Mohanraj, G. Sivakumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Template-Free CNTS Nanostructures by Hydrothermal Method: Investigating Structural, Photocatalytic, Antibacterial and Electrochemical Properties
Corresponding Author(s) : G. Sivakumar
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
In this study, nanoparticles of quaternary chalcogenide Cu2NiSnS4 (CNTS) were prepared by a hydrothermal method to evaluate their electrochemical, photocatalytic and antibacterial performances. The samples were synthesized using aqueous solution of thiourea as a sulfur source without any surfactant assistance. The XRD pattern of the synthesized samples exhibited pure phases of Cu2NiSnS4 nanoparticles corresponding to the cubic structure along the (111) plane. The average crystallite sizes decreased with increasing thiourea concentrations. FESEM analysis revealed that the optimized sample exhibited nanosheets with bundle-like structures. The oxidation states of quaternary chalcogenide nanoparticles, such as Cu2+, Ni2+ and Sn4+ were confirmed by XPS technique. The bandgap value of the synthesized sample was estimated at 1.35 eV. The cyclic voltammetry profiles exhibited pseudocapacitive characteristics, whereas the charge-discharge investigation of the CNTS-10 electrode yielded the highest capacitance value of 374 Fg-1 under a low scan rate. The degradation efficiency of two different dyes e.g. methylene blue (MB) and crystal violet (CV) was investigated by photocatalytic measurements and the optimized sample CNTS-10 exhibited the highest efficiencies of 88% and 82% respectively. The antibacterial activity results clearly showed that a maximum inhibition rate (22 mm for 100 µg/mL) was found for Vibrio parahaemolyticus against other pathogenic bacteria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Huang, Y. He, X. Wu, R. Ge, X. Zu, S. Li and L. Qiao, J. Power Sources, 456, 228023 (2020); https://doi.org/10.1016/j.jpowsour.2020.228023
- Y. Liu, Q. Wu, L. Liu, P. Manasa, L. Kang and F. Ran, J. Mater. Chem. A, 8, 8218 (2020); https://doi.org/10.1039/D0TA01490G
- J. Mitali, S. Dhinakaran and A.A. Mohamad, Energy Storage Saving, 1, 166 (2022); https://doi.org/10.1016/j.enss.2022.07.002
- M. Farghali, A.I. Osman, I.M.A. Mohamed, Z. Chen, L. Chen, I. Ihara, P.-S. Yap and D.W. Rooney, Environ. Chem. Lett., 21, 2003 (2023); https://doi.org/10.1007/s10311-023-01591-5
- X. Shi, S. Zhang, X. Chen, T. Tang and E. Mijowska, Carbon, 157, 55 (2020); https://doi.org/10.1016/j.carbon.2019.10.004
- C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X.W.D. Lou. Adv. Funct. Mater., 22, 4592 (2012); https://doi.org/10.1002/adfm.201200994
- H. Wang, Q. Gao and L. Jiang, Small, 7, 2454 (2011); https://doi.org/10.1002/smll.201100534
- B.E. Conway, V. Birss and J. Wojtowicz, J. Power Sources, 66, 1 (1997); https://doi.org/10.1016/S0378-7753(96)02474-3
- R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
- P.C. Gao, W.Y. Tsai, B. Daffos, P.L. Taberna, C.R. Pérez, Y. Gogotsi, P. Simon and F. Favier, Nano Energy, 12, 97 (2015); https://doi.org/10.1016/j.nanoen.2014.12.017
- Y. He, W. Chen, C. Gao, J. Zhou, X. Li and E. Xie, Nanoscale, 5, 8799 (2013); https://doi.org/10.1039/c3nr02157b
- D. Chen, K. Jiang, T. Huang and G. Shen, Adv. Mater., 32, 1901806 (2020); https://doi.org/10.1002/adma.201901806
- M. Härmas, R. Palm, T. Thomberg, R. Härmas, M. Koppel, M. Paalo, I. Tallo, T. Romann, A. Jänes and E. Lust, J. Appl. Electrochem., 50, 15 (2020); https://doi.org/10.1007/s10800-019-01364-5
- X. Wu, J. He, M. Zhang, Z. Liu, S. Zhang, Y. Zhao, T. Li, F. Zhang, Z. Peng, N. Cheng, J. Zhang, X. Wen, Y. Xie, H. Tian, L. Cao, L. Bi, Y. Du, H. Zhang, J. Cheng, X. An, Y. Lei, H. Shen, J. Gan, X. Zu, S. Li and L. Qiao, Nano Energy, 67, 104247 (2020); https://doi.org/10.1016/j.nanoen.2019.104247
- B. Khan, F. Raziq, M. Bilal Faheem, M. Umar Farooq and S. Hussain, F. Ali, A. Ullah, A. Mavlonov, Y. Zhao, Z. Liu, H. Tian, H. Shen, X. Zu,S. Li, H. Xiao, X. Xiang and L. Qiao, J. Hazard. Mater., 381, 120972 (2020); https://doi.org/10.1016/j.jhazmat.2019.120972
- A.C. Lokhande, R.B.V. Chalapathy, M. He, E. Jo, M. Gang, S.A. Pawar, C.D. Lokhande and J.H. Kim, Sol. Energy Mater Sol. Cells, 153, 84 (2016); https://doi.org/10.1016/j.solmat.2016.04.003
- A.C. Lokhande, A.A. Yadav, J. Lee, M. He, S.J. Patil, V.C. Lokhande, C.D. Lokhande and J.H. Kim, J. Alloys Compd., 709, 92 (2017); https://doi.org/10.1016/j.jallcom.2017.03.135
- H. Wu, D. Liu, H. Zhang, C. Wei, B. Zeng, J. Shi and S. Yang, Carbon, 50, 4847 (2012); https://doi.org/10.1016/j.carbon.2012.06.011
- V. Maheskumar, P. Gnanaprakasam, T. Selvaraju and B. Vidhya, Int. J. Hydrogen, 43, 3967 (2018); https://doi.org/10.1016/j.ijhydene.2017.07.194
- Q. Tang, H. Shen, H. Yao, W. Wang, Y. Jiang and C. Zheng, Ceramics Int., 42, 10452 (2016); https://doi.org/10.1016/j.ceramint.2016.03.194
- C. Wang, H. Tian, J. Jiang, T. Zhou, Q. Zeng, X. He, P. Huang and Y. Yao, ACS Appl. Mater. Interfaces, 9, 26038 (2017); https://doi.org/10.1021/acsami.7b07190
- J. Rajavedhanayagam, V. Murugadoss, D.K. Maurya and S. Angaiah, ES Energy Environ., 18, 65 (2022); https://doi.org/10.30919/esee8c753
- S. Sarkar, P. Howli, U.K. Ghorai, B. Das, M. Samanta, N.S. Das and K.K. Chattopadhyay, CrystEngComm, 20, 1443 (2018); https://doi.org/10.1039/C7CE02101A
- M. Isacfranklin, R. Yuvakkumar, G. Ravi, S.I. Hong, M. Thambidurai, F. Shini, C. Dang and D. Velauthapillai, Sci. Rep., 10, 19198 (2020); https://doi.org/10.1038/s41598-020-75879-9
- T.X. Wang, Y.G. Li, H.R. Liu, H. Li and S.X. Chen, Mater. Lett., 124, 148 (2014); https://doi.org/10.1016/j.matlet.2014.03.044
- H.J. Chen, S.W. Fu, T.C. Tsai and C.F. Shih, Mater. Lett., 166, 215 (2016); https://doi.org/10.1016/j.matlet.2015.12.082
- S. Sarkar, P. Howli, B. Das, N.S. Das, M. Samanta, G.C. Das and K.K. Chattopadhyay, ACS Appl. Mater. Interfaces, 9, 22652 (2017); https://doi.org/10.1021/acsami.7b00437
- J. Wang, P. Zhang, X. Song and L. Gao, RSC Adv., 4, 27805 (2014); https://doi.org/10.1039/C4RA03444A
- S. Manjula, A. Sarathkumar and G. Sivakumar, J. Nano Res., 79, 25 (2023); https://doi.org/10.4028/p-b6b546
- S. Dridi, N. Bitri and M. Abaab, Mater. Lett., 204, 61 (2017); https://doi.org/10.1016/j.matlet.2017.06.028
- M.A. Abed, N.A. Bakr and J. Al-Zanganawee, Chalcogenide Lett., 17, 179 (2020).
- M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim and A.V. Moholkar, Mater. Technol., 28, 98 (2013); https://doi.org/10.1179/1753555712Y.0000000038
- P.R. Ghediya, Y.M. Palan, D.P. Bhangadiya, I.I. Nakani, T.K. Chaudhuri, K. Joshi, C.K. Sumesh and J. Ray, Mater. Today Commun., 28, 102697 (2021); https://doi.org/10.1016/j.mtcomm.2021.102697
- M. Aono, K. Yoshitake and H. Miyazaki, Phys. Status Solidi C, 10 1058 (2013); https://doi.org/10.1002/pssc.201200796
- C. Xiao, K. Li, J. Zhang, W. Tong, Y. Liu, Z. Li, P, Huang, B. Pan, H. Sud and Y. Xie, Mater. Horiz. 1, 81 (2014); https://doi.org/10.1039/C3MH00091E
- H. Nishi, T. Nagano, S. Kuwabata and T. Torimoto, Phys. Chem. Chem. Phys., 16, 672 (2014); https://doi.org/10.1039/C3CP53946F
- Y. Li, Q. Wang, J. Shao, K. Li and W. Zhao, ChemistrySelect, 5, 5501 (2020); https://doi.org/10.1002/slct.202001254
- A.C. Lokhande, A. Patil, A. Shelke, P.T. Babar, M.G. Gang, V.C. Lokhande, D.S. Dhawale, C.D. Lokhande and J.H. Kim, Electrochim. Acta, 284, 80 (2018); https://doi.org/10.1016/j.electacta.2018.07.170
- S. Dang, Z. Wang, W. Jia, Y. Cao and J. Zhang, Mater. Res. Bull., 116, 117 (2019); https://doi.org/10.1016/j.materresbull.2019.04.023
- Y. Feng, W. Liu, Y. Wang, W. Gao, J. Li, K. Liu, X. Wang and J. Jiang, J. Power Sources, 458, 228005 (2020); https://doi.org/10.1016/j.jpowsour.2020.228005
- X. Chen, Z. Wu, D. Liu and Z. Gao, Nanoscale Res Lett., 12, 143 (2017); https://doi.org/10.1186/s11671-017-1904-4
- A.R. Machale, S.A. Phaltane, H.D. Shelke and L.D. Kadam, Mater. Today Proc., 43, 2768 (2021); https://doi.org/10.1016/j.matpr.2020.07.481
- M.B. Zaman, T. Chandel and R. Poolla, Mater. Res. Express, 6, 075058 (2019); https://doi.org/10.1088/2053-1591/ab1797
- H. Guan, X. Gu and X. Chen, Chalcogenide Lett., 15, 345 (2018).
- X. Yu, A. Shavel, X. An, Z. Luo and A. Cabot, J. Am. Chem. Soc., 136, 9236 (2014); https://doi.org/10.1021/ja502076b
- S. Yao, L. Xu, Q. Gao, X. Wang, N. Kong, W. Li, J. Wang, G. Li and X. Pu, J. Alloys Compd., 704, 469 (2017); https://doi.org/10.1016/j.jallcom.2017.02.069
References
C. Huang, Y. He, X. Wu, R. Ge, X. Zu, S. Li and L. Qiao, J. Power Sources, 456, 228023 (2020); https://doi.org/10.1016/j.jpowsour.2020.228023
Y. Liu, Q. Wu, L. Liu, P. Manasa, L. Kang and F. Ran, J. Mater. Chem. A, 8, 8218 (2020); https://doi.org/10.1039/D0TA01490G
J. Mitali, S. Dhinakaran and A.A. Mohamad, Energy Storage Saving, 1, 166 (2022); https://doi.org/10.1016/j.enss.2022.07.002
M. Farghali, A.I. Osman, I.M.A. Mohamed, Z. Chen, L. Chen, I. Ihara, P.-S. Yap and D.W. Rooney, Environ. Chem. Lett., 21, 2003 (2023); https://doi.org/10.1007/s10311-023-01591-5
X. Shi, S. Zhang, X. Chen, T. Tang and E. Mijowska, Carbon, 157, 55 (2020); https://doi.org/10.1016/j.carbon.2019.10.004
C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X.W.D. Lou. Adv. Funct. Mater., 22, 4592 (2012); https://doi.org/10.1002/adfm.201200994
H. Wang, Q. Gao and L. Jiang, Small, 7, 2454 (2011); https://doi.org/10.1002/smll.201100534
B.E. Conway, V. Birss and J. Wojtowicz, J. Power Sources, 66, 1 (1997); https://doi.org/10.1016/S0378-7753(96)02474-3
R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483 (2000); https://doi.org/10.1016/S0013-4686(00)00354-6
P.C. Gao, W.Y. Tsai, B. Daffos, P.L. Taberna, C.R. Pérez, Y. Gogotsi, P. Simon and F. Favier, Nano Energy, 12, 97 (2015); https://doi.org/10.1016/j.nanoen.2014.12.017
Y. He, W. Chen, C. Gao, J. Zhou, X. Li and E. Xie, Nanoscale, 5, 8799 (2013); https://doi.org/10.1039/c3nr02157b
D. Chen, K. Jiang, T. Huang and G. Shen, Adv. Mater., 32, 1901806 (2020); https://doi.org/10.1002/adma.201901806
M. Härmas, R. Palm, T. Thomberg, R. Härmas, M. Koppel, M. Paalo, I. Tallo, T. Romann, A. Jänes and E. Lust, J. Appl. Electrochem., 50, 15 (2020); https://doi.org/10.1007/s10800-019-01364-5
X. Wu, J. He, M. Zhang, Z. Liu, S. Zhang, Y. Zhao, T. Li, F. Zhang, Z. Peng, N. Cheng, J. Zhang, X. Wen, Y. Xie, H. Tian, L. Cao, L. Bi, Y. Du, H. Zhang, J. Cheng, X. An, Y. Lei, H. Shen, J. Gan, X. Zu, S. Li and L. Qiao, Nano Energy, 67, 104247 (2020); https://doi.org/10.1016/j.nanoen.2019.104247
B. Khan, F. Raziq, M. Bilal Faheem, M. Umar Farooq and S. Hussain, F. Ali, A. Ullah, A. Mavlonov, Y. Zhao, Z. Liu, H. Tian, H. Shen, X. Zu,S. Li, H. Xiao, X. Xiang and L. Qiao, J. Hazard. Mater., 381, 120972 (2020); https://doi.org/10.1016/j.jhazmat.2019.120972
A.C. Lokhande, R.B.V. Chalapathy, M. He, E. Jo, M. Gang, S.A. Pawar, C.D. Lokhande and J.H. Kim, Sol. Energy Mater Sol. Cells, 153, 84 (2016); https://doi.org/10.1016/j.solmat.2016.04.003
A.C. Lokhande, A.A. Yadav, J. Lee, M. He, S.J. Patil, V.C. Lokhande, C.D. Lokhande and J.H. Kim, J. Alloys Compd., 709, 92 (2017); https://doi.org/10.1016/j.jallcom.2017.03.135
H. Wu, D. Liu, H. Zhang, C. Wei, B. Zeng, J. Shi and S. Yang, Carbon, 50, 4847 (2012); https://doi.org/10.1016/j.carbon.2012.06.011
V. Maheskumar, P. Gnanaprakasam, T. Selvaraju and B. Vidhya, Int. J. Hydrogen, 43, 3967 (2018); https://doi.org/10.1016/j.ijhydene.2017.07.194
Q. Tang, H. Shen, H. Yao, W. Wang, Y. Jiang and C. Zheng, Ceramics Int., 42, 10452 (2016); https://doi.org/10.1016/j.ceramint.2016.03.194
C. Wang, H. Tian, J. Jiang, T. Zhou, Q. Zeng, X. He, P. Huang and Y. Yao, ACS Appl. Mater. Interfaces, 9, 26038 (2017); https://doi.org/10.1021/acsami.7b07190
J. Rajavedhanayagam, V. Murugadoss, D.K. Maurya and S. Angaiah, ES Energy Environ., 18, 65 (2022); https://doi.org/10.30919/esee8c753
S. Sarkar, P. Howli, U.K. Ghorai, B. Das, M. Samanta, N.S. Das and K.K. Chattopadhyay, CrystEngComm, 20, 1443 (2018); https://doi.org/10.1039/C7CE02101A
M. Isacfranklin, R. Yuvakkumar, G. Ravi, S.I. Hong, M. Thambidurai, F. Shini, C. Dang and D. Velauthapillai, Sci. Rep., 10, 19198 (2020); https://doi.org/10.1038/s41598-020-75879-9
T.X. Wang, Y.G. Li, H.R. Liu, H. Li and S.X. Chen, Mater. Lett., 124, 148 (2014); https://doi.org/10.1016/j.matlet.2014.03.044
H.J. Chen, S.W. Fu, T.C. Tsai and C.F. Shih, Mater. Lett., 166, 215 (2016); https://doi.org/10.1016/j.matlet.2015.12.082
S. Sarkar, P. Howli, B. Das, N.S. Das, M. Samanta, G.C. Das and K.K. Chattopadhyay, ACS Appl. Mater. Interfaces, 9, 22652 (2017); https://doi.org/10.1021/acsami.7b00437
J. Wang, P. Zhang, X. Song and L. Gao, RSC Adv., 4, 27805 (2014); https://doi.org/10.1039/C4RA03444A
S. Manjula, A. Sarathkumar and G. Sivakumar, J. Nano Res., 79, 25 (2023); https://doi.org/10.4028/p-b6b546
S. Dridi, N. Bitri and M. Abaab, Mater. Lett., 204, 61 (2017); https://doi.org/10.1016/j.matlet.2017.06.028
M.A. Abed, N.A. Bakr and J. Al-Zanganawee, Chalcogenide Lett., 17, 179 (2020).
M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim and A.V. Moholkar, Mater. Technol., 28, 98 (2013); https://doi.org/10.1179/1753555712Y.0000000038
P.R. Ghediya, Y.M. Palan, D.P. Bhangadiya, I.I. Nakani, T.K. Chaudhuri, K. Joshi, C.K. Sumesh and J. Ray, Mater. Today Commun., 28, 102697 (2021); https://doi.org/10.1016/j.mtcomm.2021.102697
M. Aono, K. Yoshitake and H. Miyazaki, Phys. Status Solidi C, 10 1058 (2013); https://doi.org/10.1002/pssc.201200796
C. Xiao, K. Li, J. Zhang, W. Tong, Y. Liu, Z. Li, P, Huang, B. Pan, H. Sud and Y. Xie, Mater. Horiz. 1, 81 (2014); https://doi.org/10.1039/C3MH00091E
H. Nishi, T. Nagano, S. Kuwabata and T. Torimoto, Phys. Chem. Chem. Phys., 16, 672 (2014); https://doi.org/10.1039/C3CP53946F
Y. Li, Q. Wang, J. Shao, K. Li and W. Zhao, ChemistrySelect, 5, 5501 (2020); https://doi.org/10.1002/slct.202001254
A.C. Lokhande, A. Patil, A. Shelke, P.T. Babar, M.G. Gang, V.C. Lokhande, D.S. Dhawale, C.D. Lokhande and J.H. Kim, Electrochim. Acta, 284, 80 (2018); https://doi.org/10.1016/j.electacta.2018.07.170
S. Dang, Z. Wang, W. Jia, Y. Cao and J. Zhang, Mater. Res. Bull., 116, 117 (2019); https://doi.org/10.1016/j.materresbull.2019.04.023
Y. Feng, W. Liu, Y. Wang, W. Gao, J. Li, K. Liu, X. Wang and J. Jiang, J. Power Sources, 458, 228005 (2020); https://doi.org/10.1016/j.jpowsour.2020.228005
X. Chen, Z. Wu, D. Liu and Z. Gao, Nanoscale Res Lett., 12, 143 (2017); https://doi.org/10.1186/s11671-017-1904-4
A.R. Machale, S.A. Phaltane, H.D. Shelke and L.D. Kadam, Mater. Today Proc., 43, 2768 (2021); https://doi.org/10.1016/j.matpr.2020.07.481
M.B. Zaman, T. Chandel and R. Poolla, Mater. Res. Express, 6, 075058 (2019); https://doi.org/10.1088/2053-1591/ab1797
H. Guan, X. Gu and X. Chen, Chalcogenide Lett., 15, 345 (2018).
X. Yu, A. Shavel, X. An, Z. Luo and A. Cabot, J. Am. Chem. Soc., 136, 9236 (2014); https://doi.org/10.1021/ja502076b
S. Yao, L. Xu, Q. Gao, X. Wang, N. Kong, W. Li, J. Wang, G. Li and X. Pu, J. Alloys Compd., 704, 469 (2017); https://doi.org/10.1016/j.jallcom.2017.02.069