Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical Studies on the Properties of 4,4'-Bis[(2,4,6-trinitrophenyl)amino]-[3,3'4',3''-ter(1',2',5'-oxidiazole)]-2'-oxide
Corresponding Author(s) : Fengyun Wang
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
Density functional theory (DFT) method has been used to study a novel designed molecule 4'-bis[(2,4,6-trinitrophenyl)amino]-[3,3'4',3''-ter(1',2',5'-oxidiazole)]-2'-oxide (DTNBAFF). The optimized structure and the energy gap between the HOMO and LUMO of the titled molecule have been studied based on B3LYP/6-311++G** level. The isodesmic reaction method was employed to estimate the heat of formation. The detonation velocity and detonation pressure of the titled molecule are calculated by Kamlet-Jacobs equation. The DFT method was used to study the IR spectrum of DTNBAFF and the M06L method was used to study the 1H NMR spectrum. The results show that the bond of R-NO2 and the N-O besides the oxygen ligand atom in the furoxan ring of the DTNBAFF are easier to break. The activity, density, heat of formation and detonation properties of DTNBAFF are particular better than 1,3,5-trinitro-2-methylbenzene and 3,4-bis(aminofurazano)furoxan. The relationship of thermodynamic function and temperature of DTNBAFF have been studied and it can be helpful for further study on it. The analysis of IR spectrum and 1H NMR spectrum of DTNBAFF show that the structure is stable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.F. Chen, C.Y. Hou and K.Y. Han, J. Phys. Chem. A, 114, 1169 (2010); doi:10.1021/jp909670w.
- W.R. Carper, L.P. Davis and M.W. Extine, J. Phys. Chem., 86, 459 (1982); doi:10.1021/j100393a009.
- J. Wang, J.S. Li, Q.Q. Liang, Y. Huang and H. Dong, Propellants Explos. Pyrotech., 33, 347 (2008); doi:10.1002/prep.200800225.
- W. Zheng, J.N. Wang, X.N. Ren, Z. Chen, J. Tian and Y. Zhou, J. Hazard. Mater., 177, 738 (2010); doi:10.1016/j.jhazmat.2009.12.093.
- R.V. Tsyshevsky and M.M. Kuklja, Molecules, 18, 8500 (2013); doi:10.3390/molecules18078500.
- T. Wei, W. Zhu, X. Zhang, Y.-F. Li and H. Xiao, J. Phys. Chem. A, 113, 9404 (2009); doi:10.1021/jp902295v.
- Q. Wu, W.H. Zhu and H.M. Xiao, Struct. Chem., 24, 1725 (2013); doi:10.1007/s11224-013-0217-1.
- Q. Wu, W.H. Zhu and H.M. Xiao, Struct. Chem., 25, 451 (2014); doi:10.1007/s11224-013-0306-1.
- Q. Wu, W. Zhu and H. Xiao, Can. J. Chem., 91, 968 (2013); doi:10.1139/cjc-2013-0174.
- H. Lin, P. Chen, S. Zhu, K. Li, H. Li and X. Peng, J. Energ. Mater., 32, 172 (2014); doi:10.1080/07370652.2013.808720.
- C. Qi, S.H. Li, Y.C. Li, Y. Wang, X.-K. Chen and S.-P. Pang, J. Mater. Chem., 21, 3221 (2011); doi:10.1039/c0jm02970j.
- F. Wang, H.C. Du, J.Y. Zhang and X.- Gong, J. Phys. Chem. A, 115, 11852 (2011); doi:10.1021/jp206756r.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2009).
- Q. Wu, W.H. Zhu and H.M. Xiao, J. Mol. Model., 19, 2945 (2013); doi:10.1007/s00894-013-1825-9.
- F. Xiang, W.H. Zhu and H.M. Xiao, J. Mol. Model., 19, 3103 (2013); doi:10.1007/s00894-013-1830-z.
- Q. Yan, W.H. Zhu, A. Pang, X. Chi, X. Du and H. Xiao, J. Mol. Model., 19, 1617 (2013); doi:10.1007/s00894-012-1724-5.
- T.Y. Wang, T. Zhang, L.W. Xu, X. Wu, X. Gong and M. Xia, J. Mol. Model., 20, 2516 (2014); doi:10.1007/s00894-014-2516-x.
- T.Y. Wang, C.M. Zheng, J.Q. Yang, X. Zhang, X. Gong and M. Xia, J. Mol. Model., 20, 2261 (2014); doi:10.1007/s00894-014-2261-1.
- P.W. Atkins, Physical Chemistry, Oxford University Press, Oxford (1982).
- P. Politizer and J.S. Murray, Central Eur. J. Energ. Mater., 8, 209 (2011).
- P. Politzer, P. Lane and J.S. Murray, Central Eur. J. Energ. Mater., 8, 39 (2011).
- E.F.C. Byrd and B.M. Rice, J. Phys. Chem., 110, 1005 (2006); doi:10.1021/jp0536192.
- F.A. Bulat, A. Toro-Labbe, T. Brinck, J.S. Murray and P. Politzer, J. Mol. Model., 16, 1679 (2010); doi:10.1007/s00894-010-0692-x.
- M.J. Kamlet and S.J.J. Jacobs, J. Chem. Phys., 48, 23 (1968); doi:10.1063/1.1667908.
- P. Politzer, J. Martinez, J.S. Murray, M.C. Concha and A. Toro-Labbé, Mol. Phys., 107, 2095 (2009); doi:10.1080/00268970903156306.
- W.P. Lai, P. Lian, T. Yu, J.-H. Bu, Y.-Z. Liu, W.-L. Zhu, J. Lv and Z.-X. Ge, J. Mol. Model., 20, 2343 (2014); doi:10.1007/s00894-014-2343-0.
- Q. Wu, W.H. Zhu and H.M. Xiao, J. Mater. Chem. A, 2, 13006 (2014); doi:10.1039/C4TA01879F.
References
X.F. Chen, C.Y. Hou and K.Y. Han, J. Phys. Chem. A, 114, 1169 (2010); doi:10.1021/jp909670w.
W.R. Carper, L.P. Davis and M.W. Extine, J. Phys. Chem., 86, 459 (1982); doi:10.1021/j100393a009.
J. Wang, J.S. Li, Q.Q. Liang, Y. Huang and H. Dong, Propellants Explos. Pyrotech., 33, 347 (2008); doi:10.1002/prep.200800225.
W. Zheng, J.N. Wang, X.N. Ren, Z. Chen, J. Tian and Y. Zhou, J. Hazard. Mater., 177, 738 (2010); doi:10.1016/j.jhazmat.2009.12.093.
R.V. Tsyshevsky and M.M. Kuklja, Molecules, 18, 8500 (2013); doi:10.3390/molecules18078500.
T. Wei, W. Zhu, X. Zhang, Y.-F. Li and H. Xiao, J. Phys. Chem. A, 113, 9404 (2009); doi:10.1021/jp902295v.
Q. Wu, W.H. Zhu and H.M. Xiao, Struct. Chem., 24, 1725 (2013); doi:10.1007/s11224-013-0217-1.
Q. Wu, W.H. Zhu and H.M. Xiao, Struct. Chem., 25, 451 (2014); doi:10.1007/s11224-013-0306-1.
Q. Wu, W. Zhu and H. Xiao, Can. J. Chem., 91, 968 (2013); doi:10.1139/cjc-2013-0174.
H. Lin, P. Chen, S. Zhu, K. Li, H. Li and X. Peng, J. Energ. Mater., 32, 172 (2014); doi:10.1080/07370652.2013.808720.
C. Qi, S.H. Li, Y.C. Li, Y. Wang, X.-K. Chen and S.-P. Pang, J. Mater. Chem., 21, 3221 (2011); doi:10.1039/c0jm02970j.
F. Wang, H.C. Du, J.Y. Zhang and X.- Gong, J. Phys. Chem. A, 115, 11852 (2011); doi:10.1021/jp206756r.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2009).
Q. Wu, W.H. Zhu and H.M. Xiao, J. Mol. Model., 19, 2945 (2013); doi:10.1007/s00894-013-1825-9.
F. Xiang, W.H. Zhu and H.M. Xiao, J. Mol. Model., 19, 3103 (2013); doi:10.1007/s00894-013-1830-z.
Q. Yan, W.H. Zhu, A. Pang, X. Chi, X. Du and H. Xiao, J. Mol. Model., 19, 1617 (2013); doi:10.1007/s00894-012-1724-5.
T.Y. Wang, T. Zhang, L.W. Xu, X. Wu, X. Gong and M. Xia, J. Mol. Model., 20, 2516 (2014); doi:10.1007/s00894-014-2516-x.
T.Y. Wang, C.M. Zheng, J.Q. Yang, X. Zhang, X. Gong and M. Xia, J. Mol. Model., 20, 2261 (2014); doi:10.1007/s00894-014-2261-1.
P.W. Atkins, Physical Chemistry, Oxford University Press, Oxford (1982).
P. Politizer and J.S. Murray, Central Eur. J. Energ. Mater., 8, 209 (2011).
P. Politzer, P. Lane and J.S. Murray, Central Eur. J. Energ. Mater., 8, 39 (2011).
E.F.C. Byrd and B.M. Rice, J. Phys. Chem., 110, 1005 (2006); doi:10.1021/jp0536192.
F.A. Bulat, A. Toro-Labbe, T. Brinck, J.S. Murray and P. Politzer, J. Mol. Model., 16, 1679 (2010); doi:10.1007/s00894-010-0692-x.
M.J. Kamlet and S.J.J. Jacobs, J. Chem. Phys., 48, 23 (1968); doi:10.1063/1.1667908.
P. Politzer, J. Martinez, J.S. Murray, M.C. Concha and A. Toro-Labbé, Mol. Phys., 107, 2095 (2009); doi:10.1080/00268970903156306.
W.P. Lai, P. Lian, T. Yu, J.-H. Bu, Y.-Z. Liu, W.-L. Zhu, J. Lv and Z.-X. Ge, J. Mol. Model., 20, 2343 (2014); doi:10.1007/s00894-014-2343-0.
Q. Wu, W.H. Zhu and H.M. Xiao, J. Mater. Chem. A, 2, 13006 (2014); doi:10.1039/C4TA01879F.