Copyright (c) 2023 Dr G. Sivakumar , Mr V. Balasundaram, Mr A. Sarathkumar, Dr J. Henry , Dr K. Mohanraj
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Optical, Morphological and Electrical Properties of Cu doped Calcium Stannate Nanoparticles for Electrochemical Performance
Corresponding Author(s) : G. Sivakumar
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
In this work, co precipitation method was adopted to synthesis Cu (0.01M, 0.02M, and 0.03M) doped CaSnO3 nanoparticles and the structural, optical, morphological and electrochemical characterization were studied using XRD, FTIR, UV–Visible, Photoluminescence, SEM and Cyclic voltammetry with Electrochemical impedance analysis. It is noticed from XRD patterns that the peaks shift towards higher angles attributed to the substitution of Cu2+ ions for Ca2+ ions, and confirms the orthorhombic structure of Cu2+ doped CaSnO3. The average crystallite size is found between 40 – 49 nm for Cu doping. FTIR analysis boosts the confirmation of Cu doping in to the CaSnO3 nanoparticles by the presence of vibrational peaks at 698 cm-1, 622 cm-1, and 581 cm-1 due to Cu-O stretching and the peak 483 cm-1 due to Sn-O stretching vibration. The calculated band gap values are 4.7 eV, 4.8 eV, and 4.9 eV for Cu doping. The PL emission study showed light emission towards the visible region. SEM analysis proved well-formed cubed particles about < 2µm. Specific capacitance values are highest for 0.02 M Cu doped CaSnO3 at about 1694F/g, compared to 572 F/g, 922 F/g, and 1626 F/g for pure, 0.01 M, and 0.03 M Cu doped CaSnO3 particles, respectively, at a scan rate of 10 mV/s. Overall, these findings indicate that 0.02 M and 0.03 M Cu doped CaSnO3 are promising candidates for energy storage applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Novinrooz and P. Sarabadani, Iran. J. Chem. Chem. Eng., 28, 113 (2009); https://doi.org/10.30492/IJCCE.2009.13399
- Y. Liu, Y. Zhou, D. Jia, J. Zhao, B. Wang, Y. Cui, Q. Li and B. Liu, J. Mater. Sci. Technol., 42, 212 (2020); https://doi.org/10.1016/j.jmst.2019.10.015
- M.H. Tran, T. Park and J. Hur, ACS Appl. Mater. Interfaces, 13, 13372 (2021); https://doi.org/10.1021/acsami.0c23032
- J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L. Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye and J. Hou, Adv. Mater., 34, 2205009 (2022); https://doi.org/10.1002/adma.202205009
- A.A. Bhat and R. Tomar, J. Alloys Compd., 876, 160043 (2021); https://doi.org/10.1016/j.jallcom.2021.160043
- S. Sumithra and N.V. Jaya, J. Mater. Sci. Mater. Electron., 29, 4048 (2018); https://doi.org/10.1007/s10854-017-8348-6
- Y.H. Ochoa-Muñoz, J.E. Rodríguez-Páez and R. Mejía de Gutiérrez, Mater. Chem. Phys., 266, 124557 (2021); https://doi.org/10.1016/j.matchemphys.2021.124557
- S.K. Gupta, B. Modak, D. Das, A.K. Yadav, P. Modak, A.K. Debnath and K. Sudarshan, ACS Appl. Electron. Mater., 3, 3256 (2021); https://doi.org/10.1021/acsaelm.1c00426
- H. Shaili, E. Salmani, M. Beraich, M. Zidane, M. Taibi, M. Rouchdi, H. Ez-Zahraouy, N. Hassanain and A. Mzerd, ACS Omega, 6, 32537 (2021); https://doi.org/10.1021/acsomega.1c04054
- L. Xia, T. Hu, H. Liu, J. Xie, S.U. Asif, F. Xiong and W. Hu, J. Alloys Compd., 845, 156131 (2020); https://doi.org/10.1016/j.jallcom.2020.156131
- S. Muraleedharan and A.M. Ashok, Optik, 287, 171096 (2023); https://doi.org/10.1016/j.ijleo.2023.171096
- Y. Hu, F. Zhou, X. Tian, C. Ji, Z. Huang, J. Wen, F. Luo, Z. Chen, X. Liu and Y. Peng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 243, 118799 (2020); https://doi.org/10.1016/j.saa.2020.118799
- T. Nakamura, M. Shima, M. Yasukawa and K. Ueda, J. Sol-Gel Sci. Technol., 61, 362 (2012); https://doi.org/10.1007/s10971-011-2635-0
- B. Muthukutty, A. Krishnapandi, S.-M. Chen, M. Abinaya and A. Elangovan, ACS Sustain. Chem.& Eng., 8, 4419 (2020); https://doi.org/10.1021/acssuschemeng.9b07011
- J. Wang, Y. Asakura, T. Hasegawa and S. Yin, J. Environ. Chem. Eng., 10, 108169 (2022); https://doi.org/10.1016/j.jece.2022.108169
- G. Liu, Y. Li, J. Gao, D. Li, L. Yu, J. Dong, Y. Zhang, Y. Yan, B. Fan, X. Liu and L. Jin, J. Alloys Compd., 826, 154160 (2020); https://doi.org/10.1016/j.jallcom.2020.154160
- P. Iniyavan, G.L. Balaji, S. Sarveswari and V. Vijayakumar, Tetrahedron Lett., 56, 5002 (2015); https://doi.org/10.1016/j.tetlet.2015.07.016
- E. Hatzistavrou, X. Chatzistavrou, L. Papadopoulou, N. Kantiranis, E. Kontonasaki, A.R. Boccaccini and K.M. Paraskevopoulos, Mater. Sci. Eng. C, 30, 497 (2010); https://doi.org/10.1016/j.msec.2010.01.009
- V. Sumathi, R. Jayapragash, A. Bakshi and P. Kumar Akella, Renew. Sustain. Energy Rev., 74, 130 (2017); https://doi.org/10.1016/j.rser.2017.02.013
- S. Srivastava, IOSR J. Appl. Phys., 5, 61 (2013); https://doi.org/10.9790/4861-0546165
- H.Y. He, J. Fei and J. Lu, J. Nanostruct., 5, 169 (2015); https://doi.org/10.1007/s40097-015-0147-0
- I.Z. Luna, L.N. Hilary, A.M.S. Chowdhury, M.A. Gafur, N. Khan, R.A. Khan, Bangladesh Atomic Energy Commission, OAlib, 2, 1 (2015); https://doi.org/10.4236/oalib.1101409
- A. Sharma, P. Yadav, B. Khan, P. Kumar and M.K. Singh, Mater. Today Proc., 82, 308 (2023); https://doi.org/10.1016/j.matpr.2023.02.007
- W. Zhang, J. Tang and J. Ye, J. Mater. Res., 22, 1859 (2007); https://doi.org/10.1557/jmr.2007.0259
- F. Zhong, H. Zhuang, Q. Gu and J. Long, RSC Adv., 6, 42474 (2016); https://doi.org/10.1039/C6RA05614H
References
A. Novinrooz and P. Sarabadani, Iran. J. Chem. Chem. Eng., 28, 113 (2009); https://doi.org/10.30492/IJCCE.2009.13399
Y. Liu, Y. Zhou, D. Jia, J. Zhao, B. Wang, Y. Cui, Q. Li and B. Liu, J. Mater. Sci. Technol., 42, 212 (2020); https://doi.org/10.1016/j.jmst.2019.10.015
M.H. Tran, T. Park and J. Hur, ACS Appl. Mater. Interfaces, 13, 13372 (2021); https://doi.org/10.1021/acsami.0c23032
J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L. Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye and J. Hou, Adv. Mater., 34, 2205009 (2022); https://doi.org/10.1002/adma.202205009
A.A. Bhat and R. Tomar, J. Alloys Compd., 876, 160043 (2021); https://doi.org/10.1016/j.jallcom.2021.160043
S. Sumithra and N.V. Jaya, J. Mater. Sci. Mater. Electron., 29, 4048 (2018); https://doi.org/10.1007/s10854-017-8348-6
Y.H. Ochoa-Muñoz, J.E. Rodríguez-Páez and R. Mejía de Gutiérrez, Mater. Chem. Phys., 266, 124557 (2021); https://doi.org/10.1016/j.matchemphys.2021.124557
S.K. Gupta, B. Modak, D. Das, A.K. Yadav, P. Modak, A.K. Debnath and K. Sudarshan, ACS Appl. Electron. Mater., 3, 3256 (2021); https://doi.org/10.1021/acsaelm.1c00426
H. Shaili, E. Salmani, M. Beraich, M. Zidane, M. Taibi, M. Rouchdi, H. Ez-Zahraouy, N. Hassanain and A. Mzerd, ACS Omega, 6, 32537 (2021); https://doi.org/10.1021/acsomega.1c04054
L. Xia, T. Hu, H. Liu, J. Xie, S.U. Asif, F. Xiong and W. Hu, J. Alloys Compd., 845, 156131 (2020); https://doi.org/10.1016/j.jallcom.2020.156131
S. Muraleedharan and A.M. Ashok, Optik, 287, 171096 (2023); https://doi.org/10.1016/j.ijleo.2023.171096
Y. Hu, F. Zhou, X. Tian, C. Ji, Z. Huang, J. Wen, F. Luo, Z. Chen, X. Liu and Y. Peng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 243, 118799 (2020); https://doi.org/10.1016/j.saa.2020.118799
T. Nakamura, M. Shima, M. Yasukawa and K. Ueda, J. Sol-Gel Sci. Technol., 61, 362 (2012); https://doi.org/10.1007/s10971-011-2635-0
B. Muthukutty, A. Krishnapandi, S.-M. Chen, M. Abinaya and A. Elangovan, ACS Sustain. Chem.& Eng., 8, 4419 (2020); https://doi.org/10.1021/acssuschemeng.9b07011
J. Wang, Y. Asakura, T. Hasegawa and S. Yin, J. Environ. Chem. Eng., 10, 108169 (2022); https://doi.org/10.1016/j.jece.2022.108169
G. Liu, Y. Li, J. Gao, D. Li, L. Yu, J. Dong, Y. Zhang, Y. Yan, B. Fan, X. Liu and L. Jin, J. Alloys Compd., 826, 154160 (2020); https://doi.org/10.1016/j.jallcom.2020.154160
P. Iniyavan, G.L. Balaji, S. Sarveswari and V. Vijayakumar, Tetrahedron Lett., 56, 5002 (2015); https://doi.org/10.1016/j.tetlet.2015.07.016
E. Hatzistavrou, X. Chatzistavrou, L. Papadopoulou, N. Kantiranis, E. Kontonasaki, A.R. Boccaccini and K.M. Paraskevopoulos, Mater. Sci. Eng. C, 30, 497 (2010); https://doi.org/10.1016/j.msec.2010.01.009
V. Sumathi, R. Jayapragash, A. Bakshi and P. Kumar Akella, Renew. Sustain. Energy Rev., 74, 130 (2017); https://doi.org/10.1016/j.rser.2017.02.013
S. Srivastava, IOSR J. Appl. Phys., 5, 61 (2013); https://doi.org/10.9790/4861-0546165
H.Y. He, J. Fei and J. Lu, J. Nanostruct., 5, 169 (2015); https://doi.org/10.1007/s40097-015-0147-0
I.Z. Luna, L.N. Hilary, A.M.S. Chowdhury, M.A. Gafur, N. Khan, R.A. Khan, Bangladesh Atomic Energy Commission, OAlib, 2, 1 (2015); https://doi.org/10.4236/oalib.1101409
A. Sharma, P. Yadav, B. Khan, P. Kumar and M.K. Singh, Mater. Today Proc., 82, 308 (2023); https://doi.org/10.1016/j.matpr.2023.02.007
W. Zhang, J. Tang and J. Ye, J. Mater. Res., 22, 1859 (2007); https://doi.org/10.1557/jmr.2007.0259
F. Zhong, H. Zhuang, Q. Gu and J. Long, RSC Adv., 6, 42474 (2016); https://doi.org/10.1039/C6RA05614H