Copyright (c) 2023 CHANDAN ADHIKARI, Sramana Ghosh, Prabir Kumar Das
This work is licensed under a Creative Commons Attribution 4.0 International License.
Graphene’s Role in the Clean-Up Act: Progress in Industrial Wastewater Treatment
Corresponding Author(s) : Chandan Adhikari
Asian Journal of Chemistry,
Vol. 36 No. 1 (2024): Vol 36 Issue 1, 2024
Abstract
Water scarcity and environmental pollution are the two pressing global challenges that demand innovative solutions. In recent years, graphene-based nanomaterials have emerged as promising candidates for revolutionizing the field of water purification, particularly in the treatment of industrial wastewater. This review article, the first part of a two-part series, comprehensively explores the applications, synthesis methods and mechanisms of graphene-based nanomaterials for industrial wastewater treatment. Industrial activities generate vast quantities of wastewater contaminated with a myriad of organic and inorganic pollutants, heavy metals and dyes. Traditional water treatment methods often fall short in efficiently removing these contaminants, leading to significant environmental repercussions. In contrast, graphene-based nanomaterials exhibit exceptional properties, including a high specific surface area, excellent electrical conductivity and superior mechanical strength, making them highly attractive for wastewater treatment applications. This article begins by providing an overview of the properties of graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), which form the foundation of graphene-based nanomaterials. Our discussion focuses on the many approaches to the synthesis of these nanomaterials, with particular attention paid to their scalability, cost-effectiveness, and influence on the environment. This review focuses on the various applications of graphene-based nanomaterials in the in the removal of organic pollutants and dyes through adsorption, coagulation and photocatalysis. The unique structural and chemical properties of graphene-based nanomaterials enable them to selectively adsorb pollutants, even in the presence of competing ions, making them highly efficient in complex wastewater matrices. Furthermore, we explore the mechanistic aspects of pollutant removal by graphene-based nanomaterials, elucidating the role of surface functionalization, intermolecular interactions and photocatalytic processes. In addition to their pollutant removal capabilities, graphene-based nanomaterials also exhibit remarkable regeneration potential, making them economically sustainable for long-term industrial wastewater treatment applications. The challenges associated with large-scale implementation, including cost considerations, environmental impact assessments and regulatory compliance are also discussed. This review aims to provide a comprehensive understanding of the current state of research in graphene-based nanomaterials for industrial wastewater treatment. By critically evaluating the existing iterature, this review serves as a valuable resource for researchers and practitioners seeking to advance sustainable and effective strategies for the industrial wastewater treatment through the integration of graphene-based nanomaterials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Liang, Z. Wang and J. Li, J. Clean. Prod., 237, 117649 (2019); https://doi.org/10.1016/j.jclepro.2019.117649
- J.A. Silva, Sustainability, 15, 10940 (2023); https://doi.org/10.3390/su151410940
- K. Abbass, M.Z. Qasim, H. Song, M. Murshed, H. Mahmood and I. Younis, Environ. Sci. Pollut. Res., 29, 42539 (2022); https://doi.org/10.1007/s11356-022-19718-6
- S.H.H. Al-Taai, IOP Conf. Ser.: Earth Environ. Sci., 790, 012026 (2021); https://doi.org/10.1088/1755-1315/790/1/012026
- F.D. Santos, P.L. Ferreira and J.S.T. Pedersen, Climate, 10, 75 (2022); https://doi.org/10.3390/cli10050075
- M. Zarei, Water-Energy Nexus, 3, 170 (2020); https://doi.org/10.1016/j.wen.2020.11.001
- K. Obaideen, N. Shehata, E.T. Sayed, M.A. Abdelkareem, M.S. Mahmoud and A.G. Olabi, Energy Nexus, 7, 100112 (2022); https://doi.org/10.1016/j.nexus.2022.100112
- A.V. de Walle, M. Kim, M.K. Alam, X. Wang, D. Wu, S.R. Dash, K. Rabaey and J. Kim, Environ. Sci. Ecotechnol., 16, 100227 (2023); https://doi.org/10.1016/j.ese.2023.100277
- M. Preisner, E. Neverova-Dziopak and Z. Kowalewski, Water Sci. Technol., 81, 1994 (2020); https://doi.org/10.2166/wst.2020.254
- M.S. de Ilurdoz, J.J. Sadhwani and J.V. Reboso, J. Water Process Eng., 45, 102474 (2022); https://doi.org/10.1016/j.jwpe.2021.102474
- Z. Wehbi, R. Taher, J. Faraj, M. Ramadan, C. Castelain and M. Khaled, Energy Rep., 8, 896 (2022); https://doi.org/10.1016/j.egyr.2022.07.104
- K.M. Nahiun, B. Sarker, K.N. Keya, F.I. Mahir, S. Shahida and R.A. Khan, Sci. Rev., 7, 20 (2021).
- A. Gürses, K. Günes and E. Sahin, Removal of Dyes and Pigments from Industrial Effluents. In Green Chemistry and Water Remediation: Research and Applications, Elsevier, pp. 135-187 (2021).
- S.A. Razzak, M.O. Faruque, Z. Alsheikh, L. Alsheikhmohamad, D. Alkuroud, A. Alfayez, S.M.Z. Hossain and M.M. Hossain, Environ. Adv., 7, 100168 (2022); https://doi.org/10.1016/j.envadv.2022.100168
- N. Kumar, A. Pandey, Rosy and Y.C. Sharma, J. Water Process Eng., 54, 104054 (2023); https://doi.org/10.1016/j.jwpe.2023.104054
- F. Eltaboni, N. Bader, R. El-Kailany, N. Elsharif and A. Ahmida, J. Chem. Rev., 4, 313 (2022); https://doi.org/10.22034/jcr.2022.349827.1177
- T. Islam, M.R. Repon, T. Islam, Z. Sarwar and M.M. Rahman, Environ. Sci. Pollut. Res. Int., 30, 9207 (2022); https://doi.org/10.1007/s11356-022-24398-3
- R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu and J. Sun, Ecotoxicol. Environ. Saf., 231, 113160 (2022); https://doi.org/10.1016/j.ecoenv.2021.113160
- S. Benkhaya, S. El Harfi and A. El Harfi, Appl. J. Environ. Eng. Sci., 3, 311 (2017); https://doi.org/10.48422/IMIST.PRSM/ajees-v3i3.9681
- H.B. Slama, A. Chenari Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Goliñska and L. Belbahri, Appl. Sci., 11, 6255 (2021); https://doi.org/10.3390/app11146255
- M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri and A. El Harfi, Heliyon, 5, e02711 (2019); https://doi.org/10.1016/j.heliyon.2019.e02711
- B.S. Rathi and P.S. Kumar, Curr. Opin. Green Sustain. Chem., 33, 100578 (2022); https://doi.org/10.1016/j.cogsc.2021.100578
- Y. Shi, Z. Yang, L. Xing, X. Zhang, X. Li and D. Zhang, World J. Microbiol. Biotechnol., 37, 137 (2021); https://doi.org/10.1007/s11274-021-03110-6
- K.-T. Chung, J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 34, 233 (2016); https://doi.org/10.1080/10590501.2016.1236602
- F. Uddin, Cellulose, 28, 10715 (2021); https://doi.org/10.1007/s10570-021-04228-4
- T.S. Aysha, N.S. Ahmed, M.S. El-Sedik, Y.A. Youssef and R.M. El-Shishtawy, Sci. Rep., 12, 22339 (2022); https://doi.org/10.1038/s41598-022-26875-8
- R. Sridharan and V.G. Krishnaswamy, Eds,. M.P. Shah, Bioremediation of Textile Dyes for Sustainable Environment-A Review, In: Modern Approaches in Waste Bioremediation: Environmental Microbiology, Springer International Publishing: Cham, pp 447-460 (2023).
- S. Sudarshan, S. Harikrishnan, G. RathiBhuvaneswari, V. Alamelu, S. Aanand, A. Rajasekar and M. Govarthanan, J. Appl. Microbiol., 134, lxac064 (2023); https://doi.org/10.1093/jambio/lxac064
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- H. Rasuli and R. Rasuli, J. Mater. Sci., 58, 2971 (2023); https://doi.org/10.1007/s10853-023-08183-2
- J. Wu, H. Lin, D.J. Moss, K.P. Loh and B. Jia, Nat. Rev. Chem., 7, 162 (2023); https://doi.org/10.1038/s41570-022-00458-7
- A.R. Urade, I. Lahiri and K.S. Suresh, J. Miner. Met. Mater. Soc., 75, 614 (2023); https://doi.org/10.1007/s11837-022-05505-8
- F. Zhang, K. Yang, G. Liu, Y. Chen, M. Wang, S. Li and R. Li, Compos., Part A Appl. Sci. Manuf., 160, 107051 (2022); https://doi.org/10.1016/j.compositesa.2022.107051
- A.D. Ghuge, A.R. Shirode and V.J. Kadam, Curr. Drug Targets, 18, 724 (2017); https://doi.org/10.2174/1389450117666160709023425
- K.E. Whitener Jr. and P.E. Sheehan, Diamond Rel. Mater., 46, 25 (2014); https://doi.org/10.1016/j.diamond.2014.04.006
- E. Varrla, K.R. Paton, C. Backes, A. Harvey, R.J. Smith, J. McCauley and J.N. Coleman, Nanoscale, 6, 11810 (2014); https://doi.org/10.1039/C4NR03560G
- X. Cui, C. Zhang, R. Hao and Y. Hou, Nanoscale, 3, 2118 (2011); https://doi.org/10.1039/c1nr10127g
- S.W. Mushfiq and R. Afzalzadeh, Sci. Rep., 12, 9872 (2022); https://doi.org/10.1038/s41598-022-10971-w
- P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi and A.C. Ferrari, ACS Nano, 11, 2742 (2017); https://doi.org/10.1021/acsnano.6b07735
- M. Salverda, A.R. Thiruppathi, F. Pakravan, P.C. Wood and A. Chen, Molecules, 27, 8643 (2022); https://doi.org/10.3390/molecules27248643
- V. Agarwal and P.B. Zetterlund, Chem. Eng. J., 405, 127018 (2021); https://doi.org/10.1016/j.cej.2020.127018
- A. Adetayo and D. Runsewe, Open J. Composite Mater, 9, 207 (2019); https://doi.org/10.4236/ojcm.2019.92012
- F. Liu, P. Li, H. An, P. Peng, B. McLean and F. Ding, Adv. Funct. Mater., 32, 2203191 (2022); https://doi.org/10.1002/adfm.202203191
- M. Bahri, S.H. Gebre, M.A. Elaguech, F.T. Dajan, M.G. Sendeku, C. Tlili and D. Wang, Coord. Chem. Rev., 475, 214910 (2023); https://doi.org/10.1016/j.ccr.2022.214910
- X. Zhang, X. Guo, X. Sun, Z. Su, L. Sun, P. Wang, Y. Li, F. Yu and X. Zhao, Appl. Surf. Sci., 576, 151812 (2022); https://doi.org/10.1016/j.apsusc.2021.151812
- Y. Yaakob and S.L. Kamis, Carbon Based Nanomaterials: Synthesis and Characterizations, In: Enhanced Carbon Based Materials and Their Applications, Elsevier pp. 9-36 (2023).
- S. Chatterjee, T. Abadie, M. Wang, O. Matar and R. Ruoff, CVD Process Design for 2-D Material Synthesis: Best Practices and Reporting Guidelines(2023).
- S.R. Singh and L.A.L. Jarvis, S. Afr. J. Sci., 106, 41 (2010).
- J. Sun, T. Rattanasawatesun, P. Tang, Z. Bi, S. Pandit, L. Lam, C. Wasén, M. Erlandsson, M. Bokarewa, J. Dong, F. Ding, F. Xiong and I. Mijakovic, ACS Appl. Mater. Interfaces, 14, 7152 (2022); https://doi.org/10.1021/acsami.1c21640
- M. Li, D. Liu, D. Wei, X. Song, D. Wei and A.T.S. Wee, Adv. Sci., 3, 1600003 (2016); https://doi.org/10.1002/advs.201600003
- L. Ndlwana, N. Raleie, K.M. Dimpe, H.F. Ogutu, E.O. Oseghe, M.M. Motsa, T.A.M. Msagati and B.B. Mamba, Materials, 14, 5094 (2021); https://doi.org/10.3390/ma14175094
- D.A. Katzmarek, A. Mancini, S.A. Maier and F. Iacopi, Nanotechnology, 34, 405302 (2023); https://doi.org/10.1088/1361-6528/ace369
- A. Pradeepkumar, M. Amjadipour, N. Mishra, C. Liu, M.S. Fuhrer, A. Bendavid, F. Isa, M. Zielinski, H.I. Sirikumara, T. Jayasekara, D.K. Gaskill and F. Iacopi, ACS Appl. Nano Mater., 3, 830 (2020); https://doi.org/10.1021/acsanm.9b02349
- A.K.S. Jeevaraj and M. Muthuvinayagam, Eds.: R.T. Subramaniam, R. Kasi, S. Bashir and S.S.A. Kumar, Graphene Oxide. In Graphene: Fabrication, Properties and Applications, Springer Nature Singapore: Singapore, pp 91-104 (2023).
- H. Korucu, A.I. Mohamed, A. Yartasi and M. Ugur, Chem. Zvesti, 77, 5787 (2023); https://doi.org/10.1007/s11696-023-02897-y
- P.P. Brisebois and M. Siaj, J. Mater. Chem. C Mater. Opt. Electron. Devices, 8, 1517 (2020); https://doi.org/10.1039/C9TC03251G
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
- J. Peng and J. Weng, Carbon, 94, 568 (2015); https://doi.org/10.1016/j.carbon.2015.07.035
- J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li and M. Ye, Chem. Mater., 21, 3514 (2009); https://doi.org/10.1021/cm901247t
- F. Jia, X. Xiao, A. Nashalian, S. Shen, L. Yang, Z. Han, H. Qu, T. Wang, Z. Ye, Z. Zhu, L. Huang, Y. Wang, J. Tang and J. Chen, Nano Res., 15, 6636 (2022); https://doi.org/10.1007/s12274-022-4273-y
- A.S. Gadtya, D. Tripathy, L. Rout and S. Moharana, Compos. Interfaces, (2023); https://doi.org/10.1080/09276440.2023.2229594
- Y. Zhu, G. Kong, Y. Pan, L. Liu, B. Yang, S. Zhang, D. Lai and C. Che, Chin. Chem. Lett., 33, 4541 (2022); https://doi.org/10.1016/j.cclet.2022.01.060
- X. Chen, Z. Qu, Z. Liu and G. Ren, ACS Omega, 7, 23503 (2022); https://doi.org/10.1021/acsomega.2c01963
- C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai and L.-J. Li, Chem. Mater., 21, 5674 (2009); https://doi.org/10.1021/cm902182y
- Y. Wang, Z. Li, J. Wang, J. Li and Y. Lin, Trends Biotechnol., 29, 205 (2011); https://doi.org/10.1016/j.tibtech.2011.01.008
- Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao and Y. Wang, Colloids Surf. A Physicochem. Eng. Asp., 424, 74 (2013); https://doi.org/10.1016/j.colsurfa.2013.02.030
- S. Abdolhosseinzadeh, H. Asgharzadeh and H.S. Kim, Sci. Rep., 5, 10160 (2015); https://doi.org/10.1038/srep10160
- V. Manikandan and N.Y. Lee, Chemosphere, 311, 136934 (2023); https://doi.org/10.1016/j.chemosphere.2022.136934
- L. Zhang, H. Luo, P. Liu, W. Fang and J. Geng, Int. J. Biol. Macromol., 87, 586 (2016); https://doi.org/10.1016/j.ijbiomac.2016.03.027
- Q. Kong, J. Wei, Y. Hu and C. Wei, J. Hazard. Mater., 363, 161 (2019); https://doi.org/10.1016/j.jhazmat.2018.09.084
- G. Cellot, S. Vranic, Y. Shin, R. Worsley, A.F. Rodrigues, C. Bussy, C. Casiraghi, K. Kostarelos and J.R. McDearmid, Nanoscale Horizons, 5, 1250 (2020); https://doi.org/10.1039/C9NH00777F
- S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon and R.C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006); https://doi.org/10.1021/ja060680r
- L. Yang, X. Xiao, S. Shen, J. Lama, M. Hu, F. Jia, Z. Han, H. Qu, L. Huang, Y. Wang, T. Wang, Z. Ye, Z. Zhu, J. Tang and J. Chen, ACS Appl. Nano Mater., 5, 3121 (2022); https://doi.org/10.1021/acsanm.1c04469
- W. Yu, L. Sisi, Y. Haiyan and L. Jie, RSC Adv., 10, 15328 (2020); https://doi.org/10.1039/D0RA01068E
- J. Lee, I. Kim and S. Park, ChemCatChem, 11, 2615 (2019); https://doi.org/10.1002/cctc.201900287
- S. Guo, S. Garaj, A. Bianco and C. Ménard-Moyon, Nat. Rev. Phys., 4, 247 (2022); https://doi.org/10.1038/s42254-022-00422-w
- M. Chen, J. Jiang, S. Feng, Z.-X. Low, Z. Zhong and W. Xing, J. Membr. Sci., 635, 119463 (2021); https://doi.org/10.1016/j.memsci.2021.119463
- M.H.M. Facure, R. Schneider, A.D. Alvarenga, L.A. Mercante and D.S. Correa, Forms of Graphene I—Graphene Oxide and Reduced Graphene Oxide, In: Recent Advances in Graphene and Graphene-Based Technologies, IOP Publishing Bristol, UK (2023).
- Q. Zhang, Y. Yang, H. Fan, L. Feng, G. Wen and L.-C. Qin, Colloids Surf. A Physicochem. Eng. Asp., 652, 129802 (2022); https://doi.org/10.1016/j.colsurfa.2022.129802
- S. Guo, Y. Nishina, A. Bianco and C. Ménard-Moyon, Angew. Chem. Int. Ed., 59, 1542 (2020); https://doi.org/10.1002/anie.201913461
- J. Wang, Y. Xu, X. Wu, P. Zhang and S. Hu, Nanotechnol. Rev., 9, 465 (2020); https://doi.org/10.1515/ntrev-2020-0041
- H.J. Salavagione, G. Martínez and G. Ellis, Macromol. Rapid Commun., 32, 1771 (2011); https://doi.org/10.1002/marc.201100527
- S. Stankovich, D.A. Dikin, O.C. Compton, G.H.B. Dommett, R.S. Ruoff and S.B.T. Nguyen, Chem. Mater., 22, 4153 (2010); https://doi.org/10.1021/cm100454g
- W. Tong, Y. Zhang, Q. Zhang, X. Luan, Y. Duan, S. Pan, F. Lv and Q. An, Carbon, 94, 590 (2015); https://doi.org/10.1016/j.carbon.2015.07.005
- Y. Cui, Y.H. Lee and J.W. Yang, Sci. Rep., 7, 3146 (2017); https://doi.org/10.1038/s41598-017-03468-4
- A. Bonanni, A. Ambrosi, C.K. Chua and M. Pumera, ACS Nano, 8, 4197 (2014); https://doi.org/10.1021/nn404255q
- N.A. Kumar, S. Gambarelli, F. Duclairoir, G. Bidana and L. Dubois, J. Mater. Chem. A, 1, 2789 (2013); https://doi.org/10.1039/C2TA01036D
- A. Piñeiro-García and V. Semetey, Chem. Eur. J., 29, e202301604 (2023); https://doi.org/10.1002/chem.202301604
- V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim and R. Zboril, Chem. Rev., 116, 5464 (2016); https://doi.org/10.1021/acs.chemrev.5b00620
- M. Raji, N. Zari and R. Bouhfid, Chemical Preparation and Functionalization Techniques of Graphene and Graphene Oxide, In: Functionalized Graphene Nanocomposites and their Derivatives, Elsevier, pp 1-20 (2019).
- K.A. Trivedi, U.M. Lad and C.K. Modi, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 93, 525 (2023); https://doi.org/10.1007/s40010-023-00847-7
- J. Zhan, Z. Lei and Y. Zhang, Chem, 8, 947 (2022); https://doi.org/10.1016/j.chempr.2021.12.015
- J. Liu, S. Chen, Y. Liu and B. Zhao, J. Saudi Chem. Soc., 26, 101560 (2022); https://doi.org/10.1016/j.jscs.2022.101560
- T. Kuila, P. Khanra, S. Bose, N.H. Kim, B.-C. Ku, B. Moon and J.H. Lee, Nanotechnology, 22, 305710 (2011); https://doi.org/10.1088/0957-4484/22/30/305710
- L. Nie, J. Li, G. Lu, X. Wei, Y. Deng, S. Liu, S. Zhong, Q. Shi, R. Hou, Y. Sun, C. Politis, L. Fan, O.V. Okoro and A. Shavandi, Mater. Today Commun., 31, 103697 (2022); https://doi.org/10.1016/j.mtcomm.2022.103697
- S. Patil, C. Rajkuberan and S. Sagadevan, J. Drug Deliv. Sci. Technol., 86, 104737 (2023); https://doi.org/10.1016/j.jddst.2023.104737
- B. Li, G. Pan, N.D. Avent, R.B. Lowry, T.E. Madgett and P.L. Waines, Biosens. Bioelectron., 72, 313 (2015); https://doi.org/10.1016/j.bios.2015.05.034
- H. Ge and Z. Ma, Carbohydr. Polym., 131, 280 (2015); https://doi.org/10.1016/j.carbpol.2015.06.025
- T.N. Ghosh, S.S. Pradhan, S.K. Sarkar and A.K. Bhunia, J. Mater. Sci. Mater. Electron., 32, 19157 (2021); https://doi.org/10.1007/s10854-021-06435-y
- T. Lalire, A. Taguet, J.-C. Roux, B. Otazaghine and C. Longuet, FlatChem, 39, 100500 (2023); https://doi.org/10.1016/j.flatc.2023.100500
- A. Moyseowicz, D. Minta and G. Gryglewicz, ChemElectroChem, 10, e202201145 (2023); https://doi.org/10.1002/celc.202201145
- A. Kausar and P. Bocchetta, J. Compos. Sci., 6, 76 (2022); https://doi.org/10.3390/jcs6030076
- P. Bo, X. Yunbin, G.U. Jiabao, C. Zijun, T. Yanhuang, Z.H.U. Gang
- and X.U. Huanxiang, China Plastics, 36, 190 (2022); https://doi.org/10.19491/j.issn.1001-9278.2022.04.026
- R.B. Chrisma, R.I. Jafri and E.I. Anila, J. Mater. Sci., 58, 6124 (2023); https://doi.org/10.1007/s10853-023-08386-7
- H. Yuan, L. Kong, T. Li and Q. Zhang, Chin. Chem. Lett., 28, 2180 (2017); https://doi.org/10.1016/j.cclet.2017.11.038
- S. Yadav and A. Devi, J. Energy Storage, 30, 101486 (2020); https://doi.org/10.1016/j.est.2020.101486
- S. Tajik, M.B. Askari, S.A. Ahmadi, F.G. Nejad, Z. Dourandish, R. Razavi, H. Beitollahi and A. Di Bartolomeo, Nanomaterials, 12, 491 (2022); https://doi.org/10.3390/nano12030491
- A. Jana, E. Scheer and S. Polarz, Beilstein J. Nanotechnol., 8, 688 (2017); https://doi.org/10.3762/bjnano.8.74
- P. Karthikeyan, S.S.D. Elanchezhiyan, H.A.T. Banu, M. Hasmath Farzana and C.M. Park, Chemosphere, 276, 130200 (2021); https://doi.org/10.1016/j.chemosphere.2021.130200
- M.M. Talukder, M.M. Rahman Khan and M.K. Amin, S. Afr. J. Chem. Eng., 44, 276 (2023); https://doi.org/10.1016/j.sajce.2023.02.004
- A. Kathalingam, S. Ramesh, H.M. Yadav, J.-H. Choi, H.S. Kim and H.-S. Kim, J. Alloys Compd., 830, 154734 (2020); https://doi.org/10.1016/j.jallcom.2020.154734
- J. Mathew, N. John and B. Mathew, Environ. Sci. Pollut. Res. Int., 30, 16817 (2023); https://doi.org/10.1007/s11356-022-25026-w
- G. Ramalingam, N. Perumal, A.K. Priya and S. Rajendran, Chemosphere, 300, 134391 (2022); https://doi.org/10.1016/j.chemosphere.2022.134391
- I. Khurana, A. Saxena, Bharti, J.M. Khurana and P.K. Rai, Water Air Soil Pollut., 228, 180 (2017); https://doi.org/10.1007/s11270-017-3361-1
- K. He, G. Chen, G. Zeng, A. Chen, Z. Huang, J. Shi, T. Huang, M. Peng and L. Hu, Appl. Catal. B, 228, 19 (2018); https://doi.org/10.1016/j.apcatb.2018.01.061
- A. Farhan, M. Zahid, N. Tahir, A. Mansha, M. Yaseen, G. Mustafa, M.A. Alamir, I.M. Alarifi and I. Shahid, Sci. Rep., 13, 9497 (2023); https://doi.org/10.1038/s41598-023-36486-6
- T.A. Kurniawan, Z. Mengting, D. Fu, S.K. Yeap, M.H.D. Othman, R. Avtar and T. Ouyang, J. Environ. Manage., 270, 110871 (2020); https://doi.org/10.1016/j.jenvman.2020.110871
- M. Moztahida and D.S. Lee, J. Hazard. Mater., 400, 123314 (2020); https://doi.org/10.1016/j.jhazmat.2020.123314
- Y. Liu, W. Jin, Y. Zhao, G. Zhang and W. Zhang, Appl. Catal. B, 206, 642 (2017); https://doi.org/10.1016/j.apcatb.2017.01.075
- F. Yang, X. Yu, K. Wang, Z. Liu, Z. Gao, T. Zhang, J. Niu, J. Zhao and B. Yao, J. Alloys Compd., 960, 170716 (2023); https://doi.org/10.1016/j.jallcom.2023.170716
- P. Mandal, J. Debbarma and M. Saha, NanoBioScience, 12, 6 (2023); https://doi.org/10.33263/LIANBS121.006
- Y. Yang, L. Xu, H. Wang, W. Wang and L. Zhang, Mater. Des., 108, 632 (2016); https://doi.org/10.1016/j.matdes.2016.06.104
- S.K. Tiwari, R.K. Mishra, S.K. Ha and A. Huczko, ChemNanoMat, 4, 598 (2018); https://doi.org/10.1002/cnma.201800089
- G.K. Ramesha, A.V. Kumara, H.B. Muralidhara and S. Sampath, J. Colloid Interf. Sci., 361, 270 (2011); https://doi.org/10.1016/j.jcis.2011.05.050
- X. Wang, Y. Liu, H. Pang, S. Yu, Y. Ai, X. Ma, G. Song, T. Hayat, A. Alsaedi and X. Wang, Chem. Eng. J., 344, 380 (2018); https://doi.org/10.1016/j.cej.2018.03.107
- N. Song, X.-L. Wu, S. Zhong, H. Lin and J.-R. Chen, J. Mol. Liq., 212, 63 (2015); https://doi.org/10.1016/j.molliq.2015.08.059
- X. Hong, X. Wang, Y. Li, J. Fu and B. Liang, Catalysts, 10, 921 (2020); https://doi.org/10.3390/catal10080921
- S. Ullah, Q. Shi, J. Zhou, X. Yang, H.Q. Ta, M. Hasan, N.M. Ahmad, L. Fu, A. Bachmatiuk and M.H. Rümmeli, Adv. Mater. Interfaces, 7, 2000999 (2020); https://doi.org/10.1002/admi.202000999
- P.O. Oladoye, T.O. Ajiboye, E.O. Omotola and O.J. Oyewola, Results Eng., 16, 100678 (2022); https://doi.org/10.1016/j.rineng.2022.100678
- M.D. Faysal Hossain, N. Akther and Y. Zhou, Chin. Chem. Lett., 31, 2525 (2020); https://doi.org/10.1016/j.cclet.2020.05.011
- C. Tewari, G. Tatrari, S. Kumar, M. Pathak, K.S. Rawat, Y.N. Kim, B. Saha, Y.C. Jung, P. Mukhopadhyay and N.G. Sahoo, Desalination, 567, 116952 (2023); https://doi.org/10.1016/j.desal.2023.116952
- S.V. Nipane, S.-W. Lee, G.S. Gokavi and A.N. Kadam, J. Mater. Sci.: Mater. Electr., 29, 16553 (2018); https://doi.org/10.1007/s10854-018-9749-x
- M. Azarang, A. Bakhtiyari, R. Rakhshani, A.M. Davarpanah, M. Aliahmad and M.F. Jahantigh, Adv. Powder Technol., 32, 504 (2021); https://doi.org/10.1016/j.apt.2020.12.025
- Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia and L. Xia, Chem. Eng. Res. Design, 91, 361 (2013); https://doi.org/10.1016/j.cherd.2012.07.007
- G. Vinodkumar, J. Wilson, S.S.R. Inbanathan, I.V. Potheher, M. Ashokkumar and A.C. Peter, Physica B, 580, 411752 (2020); https://doi.org/10.1016/j.physb.2019.411752
- Seema, Humaira, Z. Zafar and A. Samreen, Arabian J. Chem., 13, 4978 (2020); https://doi.org/10.1016/j.arabjc.2020.01.020
- S. Vadivel, J. Theerthagiri, J. Madhavan and D. Maruthamani, Materials Focus, 5, 393 (2016); https://doi.org/10.1166/mat.2016.1367
- T. Liu, C.O. Aniagor, M.I. Ejimofor, M.C. Menkiti, Y.M. Wakawa, J.Li, R.A. Akbour, P.-S. Yap, S.Y. Lau and J. Jeevanandam, J. Ind. Eng. Chem., 117, 21 (2023); https://doi.org/10.1016/j.jiec.2022.10.008
- S. Chandra, P. Das, S. Bag, R. Bhar and P. Pramanik, Mater. Sci. Eng. B, 177, 855 (2012); https://doi.org/10.1016/j.mseb.2012.04.006
- L. Zhao, S.-T. Yang, S. Feng, Q. Ma, X. Peng and D. Wu, Int. J. Environ. Res. Public Health, 14, 1301 (2017); https://doi.org/10.3390/ijerph14111301
- S. Rani, M. Aggarwal, M. Kumar, S. Sharma and D. Kumar, Water Sci., 30, 51 (2016); https://doi.org/10.1016/j.wsj.2016.04.001
- J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari and K.S. Kim, Carbon, 56, 173 (2013); https://doi.org/10.1016/j.carbon.2013.01.001
- M.E. Mahmoud, M.S. Abdelwahab and G.A.A. Ibrahim, Mater. Chem. Phys., 301, 127638 (2023); https://doi.org/10.1016/j.matchemphys.2023.127638
- S. Minisha and P. Rajakani, ChemistrySelect, 8, e202300816 (2023); https://doi.org/10.1002/slct.202300816
- A. Kanwal, T. Shahzadi, T. Riaz, M. Zaib, S. Khan, M.A. Habila and M. Sillanpaa, Molecules, 28, 6474 (2023); https://doi.org/10.3390/molecules28186474
- S.-H. Kim, D.-S. Kim, H. Moradi, Y.-Y. Chang and J.-K. Yang, J. Environ. Chem. Eng., 11, 109278 (2023); https://doi.org/10.1016/j.jece.2023.109278
- X. Liu, Y. Guo, C. Zhang, X. Huang, K. Ma and Y. Zhang, Sep. Purif. Tech., 286, 120400 (2022); https://doi.org/10.1016/j.seppur.2021.120400
- P.L. Yap, M.J. Nine, K. Hassan, T.T. Tung, D.N.H. Tran and D. Losic, Adv. Funct. Mater., 31, 2007356 (2021); https://doi.org/10.1002/adfm.202007356
- I. Ali, A.A. Basheer, X.Y. Mbianda, A. Burakov, E. Galunin, I. Burakova, E. Mkrtchyan, A. Tkachev and V. Grachev, Environ. Int., 127, 160 (2019); https://doi.org/10.1016/j.envint.2019.03.029
- P. Bradder, S.K. Ling, S. Wang and S. Liu, J. Chem. Eng. Data, 56, 138 (2011); https://doi.org/10.1021/je101049g
- M.D. Murcia, A.M. Hidalgo, M. Gómez, G. León, E. Gómez and M. Martínez, Materials, 16, 1369 (2023); https://doi.org/10.3390/ma16041369
- H. Li, J. Fan, Z. Shi, M. Lian, M. Tian and J. Yin, Polymer, 60, 96 (2015); https://doi.org/10.1016/j.polymer.2014.12.069
- P. Sharma, B.K. Saikia and M.R. Das, Colloids Surf. A: Physicochem. Eng. Asp., 457, 125 (2014); https://doi.org/10.1016/j.colsurfa.2014.05.054
- P.N. Diagboya, B.I. Olu-Owolabi, D. Zhou, B.-H. Han, Carbon, 79, 174 (2014); https://doi.org/10.1016/j.carbon.2014.07.057
- J.A. González, M.E. Villanueva, L.L. Piehl and G.J. Copello, Chem. Eng. J., 280, 41 (2015); https://doi.org/10.1016/j.cej.2015.05.112
- Q. Wu, C. Feng, C. Wang and Z. Wang, Colloids Surf. B Biointerface, 101, 210 (2013); https://doi.org/10.1016/j.colsurfb.2012.05.036
- Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun and S. Wang, Chem. Eng. J., 184, 326 (2012); https://doi.org/10.1016/j.cej.2011.12.017
- J.-H. Deng, Z.-R. Zhang, G.-M. Zeng, J.-L. Gong, Q.-Y. Niu and J. Liang, Chem. Eng. J., 226, 189 (2013); https://doi.org/10.1016/j.cej.2013.04.045
- M. Çelebi and E.G. Sögüt, Turk. J. Chem., 46, 1577 (2022); https://doi.org/10.55730/1300-0527.3462
- S. Wang, J. Wei, S. Lv, Z. Guo and F. Jiang, Clean: Soil, Air, Water, 41, 992 (2013); https://doi.org/10.1002/clen.201200460
- G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao and J. Wang, J. Mater. Chem., 22, 1033 (2012); https://doi.org/10.1039/C1JM13433G
- Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, Z. Li, N. Pan and X. Wang, J. Mater. Chem., 22, 3527 (2012); https://doi.org/10.1039/c2jm15544c
- W. Fan, W. Gao, C. Zhang, W.W. Tjiu, J. Pan and T. Liu, J. Mater. Chem., 22, 25108 (2012); https://doi.org/10.1039/c2jm35609k
- J. Liu, H. Cao, J. Xiong and Z. Cheng, Cryst. Eng. Commun., 14, 5140 (2012); https://doi.org/10.1039/c2ce25578b
- H. Sun, L. Cao and L. Lu, Nano Res., 4, 550 (2011); https://doi.org/10.1007/s12274-011-0111-3
- C. Li, D. Dong, J. Yang, Y. Li and C. Huang, J. Mol. Liq., 196, 348 (2014); https://doi.org/10.1016/j.molliq.2014.04.010
- K.R. Parmar, I. Patel, S. Basha and Z.V.P. Murthy, J. Mater. Sci., 49, 6772 (2014); https://doi.org/10.1007/s10853-014-8378-x
- S.V. Nipane, P.V. Korake and G.S. Gokavi, Ceram. Int., 41, 4549 (2015); https://doi.org/10.1016/j.ceramint.2014.11.151
- D. Lu, Y. Zhang, S. Lin, L. Wang and C. Wang, J. Alloys Compd., 579, 336 (2013); https://doi.org/10.1016/j.jallcom.2013.06.098
- B. Mao, B. Sidhureddy, A.R. Thiruppathi, P.C. Wood and A. Chen, New J. Chem., 44, 4519 (2020); https://doi.org/10.1039/C9NJ05895H
- H. Han, W. Wei, Z. Jiang, J. Lu, J. Zhu and J. Xie, Colloids Surf. A, 509, 539 (2016); https://doi.org/10.1016/j.colsurfa.2016.09.056
- J.A. Buledi, A.R. Solangi, A. Mallah, S.S. Hassan, S.T.H. Sherazi, Sirajuddin and M.R. Shah, J. Mater. Sci.: Mater. Electr., 34, 618 (2023); https://doi.org/10.1007/s10854-023-10061-1
- Y. Wang, Y. Pei, W. Xiong, T. Liu, J. Li, S. Liu and B. Li, Int. J. Biol. Macromol., 81, 477 (2015); https://doi.org/10.1016/j.ijbiomac.2015.08.037
- M. Wang, J. Huang, Z. Tong, W. Li and J. Chen, J. Alloys Compd., 568, 26 (2013); https://doi.org/10.1016/j.jallcom.2013.03.019
- L. Gan, B. Li, Y. Chen, B. Yu and Z. Chen, Chemosphere, 219, 148 (2019); https://doi.org/10.1016/j.chemosphere.2018.11.181
- K. Sheng, D. Li and X. Yuan, J. Build. Eng., 43, 103166 (2021); https://doi.org/10.1016/j.jobe.2021.103166
- S. Filice, D. D'Angelo, S. Libertino, I. Nicotera, V. Kosma, V. Privitera and S. Scalese, Carbon, 82, 489 (2015); https://doi.org/10.1016/j.carbon.2014.10.093
- Y. Li, J. Sun, Q. Du, L. Zhang, X. Yang, S. Wu, Y. Xia, Z. Wang, L. Xia, and A. Cao, Carbohydr. Polym., 102, 755 (2014); https://doi.org/10.1016/j.carbpol.2013.10.094
- T.S. Vo and T.T.BC. Vo, Prog. Nat. Sci.: Mater. Int., 32, 634 (2022); https://doi.org/10.1016/j.pnsc.2022.05.004
- Z.-Y. Sui, Y. Cui, J.-H. Zhu and B.-H. Han, ACS Appl. Mater. Interf., 5, 9172 (2013); https://doi.org/10.1021/am402661t
- S.H. Hsieh, W.J. Chen and C.T. Wu, Appl. Surf. Sci., 340, 9 (2015); https://doi.org/10.1016/j.apsusc.2015.02.184
- Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, and S. Wang, J. Hazard. Mater., 270, 61 (2014); https://doi.org/10.1016/j.jhazmat.2014.01.027
- P. Shi, R. Su, S. Zhu, M. Zhu, D. Li and S. Xu, J. Hazard. Mater., 229, 331 (2012); https://doi.org/10.1016/j.jhazmat.2012.06.007
- X. Rong, F. Qiu, J. Qin, H. Zhao, J. Yan and D. Yang, J. Ind. Eng. Chem., 26, 354 (2015); https://doi.org/10.1016/j.jiec.2014.12.009
- X. Wang, Z. Liu, X. Ye, K. Hu, H. Zhong, J. Yu, M. Jin and Z. Guo, Appl. Surf. Sci., 308, 82 (2014); https://doi.org/10.1016/j.apsusc.2014.04.103
- W. Wang, Y. Cheng, T. Kong and G. Cheng, J. Hazard. Mater., 299, 50 (2015); https://doi.org/10.1016/j.jhazmat.2015.06.010
- D.R. Rout, H.M. Jena, O. Baigenzhenov and A. Hosseini-Bandegharaei, Sci. Total Environ., 863, 160871 (2023); https://doi.org/10.1016/j.scitotenv.2022.160871
- R.D. Huelsmann, C. Will and E. Carasek, J. Sep. Sci., 44, 1148 (2021); https://doi.org/10.1002/jssc.202000923
- G. Ersan, O.G. Apul, F. Perreault and T. Karanfil, Water Res., 126, 385 (2017); https://doi.org/10.1016/j.watres.2017.08.010
- H. Tang, Y. Zhao, S. Shan, X. Yang, D. Liu, F. Cui and B. Xing, Environ. Sci.: Nano, 5, 2357 (2018) https://doi.org/10.1039/C8EN00384J
- J.F. Gonthier, S.N. Steinmann, L. Roch, A. Ruggi, N. Luisier, K. Severin and C. Corminboeuf, Chem. Commun., 48, 9239 (2012); https://doi.org/10.1039/c2cc33886f
- P. Hu, H. Su, Z. Chen, C. Yu, Q. Li, B. Zhou, P.J.J. Alvarez and M. Long, Environ. Sci. Technol., 51, 11288 (2017); https://doi.org/10.1021/acs.est.7b03014
- L. Yu, X. Wu, Q. Liu, L. Liu, X. Jiang, J. Yu, C. Feng and M. Zhong, J. Nanosci. Nanotechnol., 16, 12426 (2016); https://doi.org/10.1166/jnn.2016.12974
- Y. Li, Q. Wang, L. Liu, S. Tabassum, J. Sun and Y. Hong, Sci. Total Environ., 759, 143523 (2021); https://doi.org/10.1016/j.scitotenv.2020.143523
- J. Kwon and B. Lee, Chem. Eng. Res. Design, 104, 519 (2015); https://doi.org/10.1016/j.cherd.2015.09.007
- C.-C. Fu, R.-S. Juang, M.M. Huq and C.-T. Hsieh, J. Taiwan Instit. Chem. Eng., 67, 338 (2016); https://doi.org/10.1016/j.jtice.2016.07.043
- M. Mukherjee, S. Goswami, P. Banerjee, S. Sengupta, P. Das, Prasanta K. Banerjee and S. Datta, Environ. Technol. Innov., 13, 398 (2019); https://doi.org/10.1016/j.eti.2016.11.006
- Z. Gong, S. Li, W. Han, J. Wang, J. Ma and X. Zhang, Appl. Surf. Sci., 362, 459 (2016); https://doi.org/10.1016/j.apsusc.2015.11.251
- S. Yu, X. Wang, W. Yao, J. Wang, Y. Ji, Y. Ai, A. Alsaedi, T. Hayat and X. Wang, Environ. Sci. Technol., 51, 3278 (2017); https://doi.org/10.1021/acs.est.6b06259
- Y. Wang, X. Wei, Y. Qi and H. Huang, Chemosphere, 263, 127563 (2021); https://doi.org/10.1016/j.chemosphere.2020.127563
- X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, Z.H. Zhang, Y. Wu, Y.X. Ge and D.D. Wang, Materials & Design, 140, 431 (2018); https://doi.org/10.1016/j.matdes.2017.12.016
- Z.-H. Chen, Z. Liu, J.-Q. Hu, Q.-W. Cai, X.-Y. Li, W. Wang, Y. Faraj, X.-J. Ju, R. Xie and L.-Y. Chu, J. Membr. Sci., 595, 117510 (2020); https://doi.org/10.1016/j.memsci.2019.117510
- X. Wang, Y. Qin, L. Zhu and H. Tang, Environ. Sci. Technol., 49, 6855 (2015); https://doi.org/10.1021/acs.est.5b01059
- W. Sun, C. Wang, W. Pan, S. Li and B. Chen, Environ. Sci.: Nano, 4, 1377 (2017); https://doi.org/10.1039/C7EN00295E
- V.K. Gupta, S. Agarwal, H. Sadegh, G.A.M. Ali, A.K. Bharti and A.S.H. Makhlouf, J. Mol. Liq., 237, 466 (2017); https://doi.org/10.1016/j.molliq.2017.04.113
- M.A. Ahsan, V. Jabbari, M.T. Islam, R.S. Turley, N. Dominguez, H. Kim, E. Castro, J.A. Hernandez-Viezcas, M.L. Curry, J. Lopez, J.L. GardeaTorresdey and J.C. Noveron, Sci. Total Environ., 673, 306 (2019); https://doi.org/10.1016/j.scitotenv.2019.03.219
- Y. Kuang, R. Yang, Z. Zhang, J. Fang, M. Xing and D. Wu, Chemosphere, 236, 124416 (2019); https://doi.org/10.1016/j.chemosphere.2019.124416
- Y. Zhang, Z. Chen, L. Zhou, P. Wu, Y. Zhao, Y. Lai and F. Wang, Environ. Pollut., 244, 93 (2019); https://doi.org/10.1016/j.envpol.2018.10.028
- A. Abu-Nada, A. Abdala and G. McKay, J. Environ. Chem. Eng., 9, 1058585 (2021); https://doi.org/10.1016/j.jece.2021.105858
- Q. Zhang, Y.-L. Zhou, B.Z. Wang and J.-M. Hong, Catalysis Lett., 151, 3170 (2021); https://doi.org/10.1007/s10562-021-03553-4
- Z. Wu, X. Yuan, H. Zhong, H. Wang, G. Zeng, X. Chen, H. Wang, L. Zhang and J. Shao, Scient. Rep., 6, 25638 (2016); https://doi.org/10.1038/srep25638
- F. Yu, X. Bai, C. Yang, L. Xu and J. Ma, Catalysts, 9, 607 (2019); https://doi.org/10.3390/catal9070607
- A. Mehrizad, K. Zare, H. Aghaie and S. Dastmalchi, Int. J. Environ. Sci. Technol., 9, 355 (2012); https://doi.org/10.1007/s13762-012-0038-6
- X. Wang, S. Huang, L. Zhu, X. Tian, S. Li and H. Tang, Carbon, 69, 101 (2014); https://doi.org/10.1016/j.carbon.2013.11.070
- C. Zhang, X. Wang, Z. Ma, Z. Luan, Y. Wang, Z. Wang and L. Wang Environ. Chem. Lett., 18, 377 (2020); https://doi.org/10.1007/s10311-019-00953-2
References
L. Liang, Z. Wang and J. Li, J. Clean. Prod., 237, 117649 (2019); https://doi.org/10.1016/j.jclepro.2019.117649
J.A. Silva, Sustainability, 15, 10940 (2023); https://doi.org/10.3390/su151410940
K. Abbass, M.Z. Qasim, H. Song, M. Murshed, H. Mahmood and I. Younis, Environ. Sci. Pollut. Res., 29, 42539 (2022); https://doi.org/10.1007/s11356-022-19718-6
S.H.H. Al-Taai, IOP Conf. Ser.: Earth Environ. Sci., 790, 012026 (2021); https://doi.org/10.1088/1755-1315/790/1/012026
F.D. Santos, P.L. Ferreira and J.S.T. Pedersen, Climate, 10, 75 (2022); https://doi.org/10.3390/cli10050075
M. Zarei, Water-Energy Nexus, 3, 170 (2020); https://doi.org/10.1016/j.wen.2020.11.001
K. Obaideen, N. Shehata, E.T. Sayed, M.A. Abdelkareem, M.S. Mahmoud and A.G. Olabi, Energy Nexus, 7, 100112 (2022); https://doi.org/10.1016/j.nexus.2022.100112
A.V. de Walle, M. Kim, M.K. Alam, X. Wang, D. Wu, S.R. Dash, K. Rabaey and J. Kim, Environ. Sci. Ecotechnol., 16, 100227 (2023); https://doi.org/10.1016/j.ese.2023.100277
M. Preisner, E. Neverova-Dziopak and Z. Kowalewski, Water Sci. Technol., 81, 1994 (2020); https://doi.org/10.2166/wst.2020.254
M.S. de Ilurdoz, J.J. Sadhwani and J.V. Reboso, J. Water Process Eng., 45, 102474 (2022); https://doi.org/10.1016/j.jwpe.2021.102474
Z. Wehbi, R. Taher, J. Faraj, M. Ramadan, C. Castelain and M. Khaled, Energy Rep., 8, 896 (2022); https://doi.org/10.1016/j.egyr.2022.07.104
K.M. Nahiun, B. Sarker, K.N. Keya, F.I. Mahir, S. Shahida and R.A. Khan, Sci. Rev., 7, 20 (2021).
A. Gürses, K. Günes and E. Sahin, Removal of Dyes and Pigments from Industrial Effluents. In Green Chemistry and Water Remediation: Research and Applications, Elsevier, pp. 135-187 (2021).
S.A. Razzak, M.O. Faruque, Z. Alsheikh, L. Alsheikhmohamad, D. Alkuroud, A. Alfayez, S.M.Z. Hossain and M.M. Hossain, Environ. Adv., 7, 100168 (2022); https://doi.org/10.1016/j.envadv.2022.100168
N. Kumar, A. Pandey, Rosy and Y.C. Sharma, J. Water Process Eng., 54, 104054 (2023); https://doi.org/10.1016/j.jwpe.2023.104054
F. Eltaboni, N. Bader, R. El-Kailany, N. Elsharif and A. Ahmida, J. Chem. Rev., 4, 313 (2022); https://doi.org/10.22034/jcr.2022.349827.1177
T. Islam, M.R. Repon, T. Islam, Z. Sarwar and M.M. Rahman, Environ. Sci. Pollut. Res. Int., 30, 9207 (2022); https://doi.org/10.1007/s11356-022-24398-3
R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu and J. Sun, Ecotoxicol. Environ. Saf., 231, 113160 (2022); https://doi.org/10.1016/j.ecoenv.2021.113160
S. Benkhaya, S. El Harfi and A. El Harfi, Appl. J. Environ. Eng. Sci., 3, 311 (2017); https://doi.org/10.48422/IMIST.PRSM/ajees-v3i3.9681
H.B. Slama, A. Chenari Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Goliñska and L. Belbahri, Appl. Sci., 11, 6255 (2021); https://doi.org/10.3390/app11146255
M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri and A. El Harfi, Heliyon, 5, e02711 (2019); https://doi.org/10.1016/j.heliyon.2019.e02711
B.S. Rathi and P.S. Kumar, Curr. Opin. Green Sustain. Chem., 33, 100578 (2022); https://doi.org/10.1016/j.cogsc.2021.100578
Y. Shi, Z. Yang, L. Xing, X. Zhang, X. Li and D. Zhang, World J. Microbiol. Biotechnol., 37, 137 (2021); https://doi.org/10.1007/s11274-021-03110-6
K.-T. Chung, J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 34, 233 (2016); https://doi.org/10.1080/10590501.2016.1236602
F. Uddin, Cellulose, 28, 10715 (2021); https://doi.org/10.1007/s10570-021-04228-4
T.S. Aysha, N.S. Ahmed, M.S. El-Sedik, Y.A. Youssef and R.M. El-Shishtawy, Sci. Rep., 12, 22339 (2022); https://doi.org/10.1038/s41598-022-26875-8
R. Sridharan and V.G. Krishnaswamy, Eds,. M.P. Shah, Bioremediation of Textile Dyes for Sustainable Environment-A Review, In: Modern Approaches in Waste Bioremediation: Environmental Microbiology, Springer International Publishing: Cham, pp 447-460 (2023).
S. Sudarshan, S. Harikrishnan, G. RathiBhuvaneswari, V. Alamelu, S. Aanand, A. Rajasekar and M. Govarthanan, J. Appl. Microbiol., 134, lxac064 (2023); https://doi.org/10.1093/jambio/lxac064
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
H. Rasuli and R. Rasuli, J. Mater. Sci., 58, 2971 (2023); https://doi.org/10.1007/s10853-023-08183-2
J. Wu, H. Lin, D.J. Moss, K.P. Loh and B. Jia, Nat. Rev. Chem., 7, 162 (2023); https://doi.org/10.1038/s41570-022-00458-7
A.R. Urade, I. Lahiri and K.S. Suresh, J. Miner. Met. Mater. Soc., 75, 614 (2023); https://doi.org/10.1007/s11837-022-05505-8
F. Zhang, K. Yang, G. Liu, Y. Chen, M. Wang, S. Li and R. Li, Compos., Part A Appl. Sci. Manuf., 160, 107051 (2022); https://doi.org/10.1016/j.compositesa.2022.107051
A.D. Ghuge, A.R. Shirode and V.J. Kadam, Curr. Drug Targets, 18, 724 (2017); https://doi.org/10.2174/1389450117666160709023425
K.E. Whitener Jr. and P.E. Sheehan, Diamond Rel. Mater., 46, 25 (2014); https://doi.org/10.1016/j.diamond.2014.04.006
E. Varrla, K.R. Paton, C. Backes, A. Harvey, R.J. Smith, J. McCauley and J.N. Coleman, Nanoscale, 6, 11810 (2014); https://doi.org/10.1039/C4NR03560G
X. Cui, C. Zhang, R. Hao and Y. Hou, Nanoscale, 3, 2118 (2011); https://doi.org/10.1039/c1nr10127g
S.W. Mushfiq and R. Afzalzadeh, Sci. Rep., 12, 9872 (2022); https://doi.org/10.1038/s41598-022-10971-w
P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi and A.C. Ferrari, ACS Nano, 11, 2742 (2017); https://doi.org/10.1021/acsnano.6b07735
M. Salverda, A.R. Thiruppathi, F. Pakravan, P.C. Wood and A. Chen, Molecules, 27, 8643 (2022); https://doi.org/10.3390/molecules27248643
V. Agarwal and P.B. Zetterlund, Chem. Eng. J., 405, 127018 (2021); https://doi.org/10.1016/j.cej.2020.127018
A. Adetayo and D. Runsewe, Open J. Composite Mater, 9, 207 (2019); https://doi.org/10.4236/ojcm.2019.92012
F. Liu, P. Li, H. An, P. Peng, B. McLean and F. Ding, Adv. Funct. Mater., 32, 2203191 (2022); https://doi.org/10.1002/adfm.202203191
M. Bahri, S.H. Gebre, M.A. Elaguech, F.T. Dajan, M.G. Sendeku, C. Tlili and D. Wang, Coord. Chem. Rev., 475, 214910 (2023); https://doi.org/10.1016/j.ccr.2022.214910
X. Zhang, X. Guo, X. Sun, Z. Su, L. Sun, P. Wang, Y. Li, F. Yu and X. Zhao, Appl. Surf. Sci., 576, 151812 (2022); https://doi.org/10.1016/j.apsusc.2021.151812
Y. Yaakob and S.L. Kamis, Carbon Based Nanomaterials: Synthesis and Characterizations, In: Enhanced Carbon Based Materials and Their Applications, Elsevier pp. 9-36 (2023).
S. Chatterjee, T. Abadie, M. Wang, O. Matar and R. Ruoff, CVD Process Design for 2-D Material Synthesis: Best Practices and Reporting Guidelines(2023).
S.R. Singh and L.A.L. Jarvis, S. Afr. J. Sci., 106, 41 (2010).
J. Sun, T. Rattanasawatesun, P. Tang, Z. Bi, S. Pandit, L. Lam, C. Wasén, M. Erlandsson, M. Bokarewa, J. Dong, F. Ding, F. Xiong and I. Mijakovic, ACS Appl. Mater. Interfaces, 14, 7152 (2022); https://doi.org/10.1021/acsami.1c21640
M. Li, D. Liu, D. Wei, X. Song, D. Wei and A.T.S. Wee, Adv. Sci., 3, 1600003 (2016); https://doi.org/10.1002/advs.201600003
L. Ndlwana, N. Raleie, K.M. Dimpe, H.F. Ogutu, E.O. Oseghe, M.M. Motsa, T.A.M. Msagati and B.B. Mamba, Materials, 14, 5094 (2021); https://doi.org/10.3390/ma14175094
D.A. Katzmarek, A. Mancini, S.A. Maier and F. Iacopi, Nanotechnology, 34, 405302 (2023); https://doi.org/10.1088/1361-6528/ace369
A. Pradeepkumar, M. Amjadipour, N. Mishra, C. Liu, M.S. Fuhrer, A. Bendavid, F. Isa, M. Zielinski, H.I. Sirikumara, T. Jayasekara, D.K. Gaskill and F. Iacopi, ACS Appl. Nano Mater., 3, 830 (2020); https://doi.org/10.1021/acsanm.9b02349
A.K.S. Jeevaraj and M. Muthuvinayagam, Eds.: R.T. Subramaniam, R. Kasi, S. Bashir and S.S.A. Kumar, Graphene Oxide. In Graphene: Fabrication, Properties and Applications, Springer Nature Singapore: Singapore, pp 91-104 (2023).
H. Korucu, A.I. Mohamed, A. Yartasi and M. Ugur, Chem. Zvesti, 77, 5787 (2023); https://doi.org/10.1007/s11696-023-02897-y
P.P. Brisebois and M. Siaj, J. Mater. Chem. C Mater. Opt. Electron. Devices, 8, 1517 (2020); https://doi.org/10.1039/C9TC03251G
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
J. Peng and J. Weng, Carbon, 94, 568 (2015); https://doi.org/10.1016/j.carbon.2015.07.035
J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li and M. Ye, Chem. Mater., 21, 3514 (2009); https://doi.org/10.1021/cm901247t
F. Jia, X. Xiao, A. Nashalian, S. Shen, L. Yang, Z. Han, H. Qu, T. Wang, Z. Ye, Z. Zhu, L. Huang, Y. Wang, J. Tang and J. Chen, Nano Res., 15, 6636 (2022); https://doi.org/10.1007/s12274-022-4273-y
A.S. Gadtya, D. Tripathy, L. Rout and S. Moharana, Compos. Interfaces, (2023); https://doi.org/10.1080/09276440.2023.2229594
Y. Zhu, G. Kong, Y. Pan, L. Liu, B. Yang, S. Zhang, D. Lai and C. Che, Chin. Chem. Lett., 33, 4541 (2022); https://doi.org/10.1016/j.cclet.2022.01.060
X. Chen, Z. Qu, Z. Liu and G. Ren, ACS Omega, 7, 23503 (2022); https://doi.org/10.1021/acsomega.2c01963
C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai and L.-J. Li, Chem. Mater., 21, 5674 (2009); https://doi.org/10.1021/cm902182y
Y. Wang, Z. Li, J. Wang, J. Li and Y. Lin, Trends Biotechnol., 29, 205 (2011); https://doi.org/10.1016/j.tibtech.2011.01.008
Y. Tang, H. Guo, L. Xiao, S. Yu, N. Gao and Y. Wang, Colloids Surf. A Physicochem. Eng. Asp., 424, 74 (2013); https://doi.org/10.1016/j.colsurfa.2013.02.030
S. Abdolhosseinzadeh, H. Asgharzadeh and H.S. Kim, Sci. Rep., 5, 10160 (2015); https://doi.org/10.1038/srep10160
V. Manikandan and N.Y. Lee, Chemosphere, 311, 136934 (2023); https://doi.org/10.1016/j.chemosphere.2022.136934
L. Zhang, H. Luo, P. Liu, W. Fang and J. Geng, Int. J. Biol. Macromol., 87, 586 (2016); https://doi.org/10.1016/j.ijbiomac.2016.03.027
Q. Kong, J. Wei, Y. Hu and C. Wei, J. Hazard. Mater., 363, 161 (2019); https://doi.org/10.1016/j.jhazmat.2018.09.084
G. Cellot, S. Vranic, Y. Shin, R. Worsley, A.F. Rodrigues, C. Bussy, C. Casiraghi, K. Kostarelos and J.R. McDearmid, Nanoscale Horizons, 5, 1250 (2020); https://doi.org/10.1039/C9NH00777F
S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon and R.C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006); https://doi.org/10.1021/ja060680r
L. Yang, X. Xiao, S. Shen, J. Lama, M. Hu, F. Jia, Z. Han, H. Qu, L. Huang, Y. Wang, T. Wang, Z. Ye, Z. Zhu, J. Tang and J. Chen, ACS Appl. Nano Mater., 5, 3121 (2022); https://doi.org/10.1021/acsanm.1c04469
W. Yu, L. Sisi, Y. Haiyan and L. Jie, RSC Adv., 10, 15328 (2020); https://doi.org/10.1039/D0RA01068E
J. Lee, I. Kim and S. Park, ChemCatChem, 11, 2615 (2019); https://doi.org/10.1002/cctc.201900287
S. Guo, S. Garaj, A. Bianco and C. Ménard-Moyon, Nat. Rev. Phys., 4, 247 (2022); https://doi.org/10.1038/s42254-022-00422-w
M. Chen, J. Jiang, S. Feng, Z.-X. Low, Z. Zhong and W. Xing, J. Membr. Sci., 635, 119463 (2021); https://doi.org/10.1016/j.memsci.2021.119463
M.H.M. Facure, R. Schneider, A.D. Alvarenga, L.A. Mercante and D.S. Correa, Forms of Graphene I—Graphene Oxide and Reduced Graphene Oxide, In: Recent Advances in Graphene and Graphene-Based Technologies, IOP Publishing Bristol, UK (2023).
Q. Zhang, Y. Yang, H. Fan, L. Feng, G. Wen and L.-C. Qin, Colloids Surf. A Physicochem. Eng. Asp., 652, 129802 (2022); https://doi.org/10.1016/j.colsurfa.2022.129802
S. Guo, Y. Nishina, A. Bianco and C. Ménard-Moyon, Angew. Chem. Int. Ed., 59, 1542 (2020); https://doi.org/10.1002/anie.201913461
J. Wang, Y. Xu, X. Wu, P. Zhang and S. Hu, Nanotechnol. Rev., 9, 465 (2020); https://doi.org/10.1515/ntrev-2020-0041
H.J. Salavagione, G. Martínez and G. Ellis, Macromol. Rapid Commun., 32, 1771 (2011); https://doi.org/10.1002/marc.201100527
S. Stankovich, D.A. Dikin, O.C. Compton, G.H.B. Dommett, R.S. Ruoff and S.B.T. Nguyen, Chem. Mater., 22, 4153 (2010); https://doi.org/10.1021/cm100454g
W. Tong, Y. Zhang, Q. Zhang, X. Luan, Y. Duan, S. Pan, F. Lv and Q. An, Carbon, 94, 590 (2015); https://doi.org/10.1016/j.carbon.2015.07.005
Y. Cui, Y.H. Lee and J.W. Yang, Sci. Rep., 7, 3146 (2017); https://doi.org/10.1038/s41598-017-03468-4
A. Bonanni, A. Ambrosi, C.K. Chua and M. Pumera, ACS Nano, 8, 4197 (2014); https://doi.org/10.1021/nn404255q
N.A. Kumar, S. Gambarelli, F. Duclairoir, G. Bidana and L. Dubois, J. Mater. Chem. A, 1, 2789 (2013); https://doi.org/10.1039/C2TA01036D
A. Piñeiro-García and V. Semetey, Chem. Eur. J., 29, e202301604 (2023); https://doi.org/10.1002/chem.202301604
V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim and R. Zboril, Chem. Rev., 116, 5464 (2016); https://doi.org/10.1021/acs.chemrev.5b00620
M. Raji, N. Zari and R. Bouhfid, Chemical Preparation and Functionalization Techniques of Graphene and Graphene Oxide, In: Functionalized Graphene Nanocomposites and their Derivatives, Elsevier, pp 1-20 (2019).
K.A. Trivedi, U.M. Lad and C.K. Modi, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 93, 525 (2023); https://doi.org/10.1007/s40010-023-00847-7
J. Zhan, Z. Lei and Y. Zhang, Chem, 8, 947 (2022); https://doi.org/10.1016/j.chempr.2021.12.015
J. Liu, S. Chen, Y. Liu and B. Zhao, J. Saudi Chem. Soc., 26, 101560 (2022); https://doi.org/10.1016/j.jscs.2022.101560
T. Kuila, P. Khanra, S. Bose, N.H. Kim, B.-C. Ku, B. Moon and J.H. Lee, Nanotechnology, 22, 305710 (2011); https://doi.org/10.1088/0957-4484/22/30/305710
L. Nie, J. Li, G. Lu, X. Wei, Y. Deng, S. Liu, S. Zhong, Q. Shi, R. Hou, Y. Sun, C. Politis, L. Fan, O.V. Okoro and A. Shavandi, Mater. Today Commun., 31, 103697 (2022); https://doi.org/10.1016/j.mtcomm.2022.103697
S. Patil, C. Rajkuberan and S. Sagadevan, J. Drug Deliv. Sci. Technol., 86, 104737 (2023); https://doi.org/10.1016/j.jddst.2023.104737
B. Li, G. Pan, N.D. Avent, R.B. Lowry, T.E. Madgett and P.L. Waines, Biosens. Bioelectron., 72, 313 (2015); https://doi.org/10.1016/j.bios.2015.05.034
H. Ge and Z. Ma, Carbohydr. Polym., 131, 280 (2015); https://doi.org/10.1016/j.carbpol.2015.06.025
T.N. Ghosh, S.S. Pradhan, S.K. Sarkar and A.K. Bhunia, J. Mater. Sci. Mater. Electron., 32, 19157 (2021); https://doi.org/10.1007/s10854-021-06435-y
T. Lalire, A. Taguet, J.-C. Roux, B. Otazaghine and C. Longuet, FlatChem, 39, 100500 (2023); https://doi.org/10.1016/j.flatc.2023.100500
A. Moyseowicz, D. Minta and G. Gryglewicz, ChemElectroChem, 10, e202201145 (2023); https://doi.org/10.1002/celc.202201145
A. Kausar and P. Bocchetta, J. Compos. Sci., 6, 76 (2022); https://doi.org/10.3390/jcs6030076
P. Bo, X. Yunbin, G.U. Jiabao, C. Zijun, T. Yanhuang, Z.H.U. Gang
and X.U. Huanxiang, China Plastics, 36, 190 (2022); https://doi.org/10.19491/j.issn.1001-9278.2022.04.026
R.B. Chrisma, R.I. Jafri and E.I. Anila, J. Mater. Sci., 58, 6124 (2023); https://doi.org/10.1007/s10853-023-08386-7
H. Yuan, L. Kong, T. Li and Q. Zhang, Chin. Chem. Lett., 28, 2180 (2017); https://doi.org/10.1016/j.cclet.2017.11.038
S. Yadav and A. Devi, J. Energy Storage, 30, 101486 (2020); https://doi.org/10.1016/j.est.2020.101486
S. Tajik, M.B. Askari, S.A. Ahmadi, F.G. Nejad, Z. Dourandish, R. Razavi, H. Beitollahi and A. Di Bartolomeo, Nanomaterials, 12, 491 (2022); https://doi.org/10.3390/nano12030491
A. Jana, E. Scheer and S. Polarz, Beilstein J. Nanotechnol., 8, 688 (2017); https://doi.org/10.3762/bjnano.8.74
P. Karthikeyan, S.S.D. Elanchezhiyan, H.A.T. Banu, M. Hasmath Farzana and C.M. Park, Chemosphere, 276, 130200 (2021); https://doi.org/10.1016/j.chemosphere.2021.130200
M.M. Talukder, M.M. Rahman Khan and M.K. Amin, S. Afr. J. Chem. Eng., 44, 276 (2023); https://doi.org/10.1016/j.sajce.2023.02.004
A. Kathalingam, S. Ramesh, H.M. Yadav, J.-H. Choi, H.S. Kim and H.-S. Kim, J. Alloys Compd., 830, 154734 (2020); https://doi.org/10.1016/j.jallcom.2020.154734
J. Mathew, N. John and B. Mathew, Environ. Sci. Pollut. Res. Int., 30, 16817 (2023); https://doi.org/10.1007/s11356-022-25026-w
G. Ramalingam, N. Perumal, A.K. Priya and S. Rajendran, Chemosphere, 300, 134391 (2022); https://doi.org/10.1016/j.chemosphere.2022.134391
I. Khurana, A. Saxena, Bharti, J.M. Khurana and P.K. Rai, Water Air Soil Pollut., 228, 180 (2017); https://doi.org/10.1007/s11270-017-3361-1
K. He, G. Chen, G. Zeng, A. Chen, Z. Huang, J. Shi, T. Huang, M. Peng and L. Hu, Appl. Catal. B, 228, 19 (2018); https://doi.org/10.1016/j.apcatb.2018.01.061
A. Farhan, M. Zahid, N. Tahir, A. Mansha, M. Yaseen, G. Mustafa, M.A. Alamir, I.M. Alarifi and I. Shahid, Sci. Rep., 13, 9497 (2023); https://doi.org/10.1038/s41598-023-36486-6
T.A. Kurniawan, Z. Mengting, D. Fu, S.K. Yeap, M.H.D. Othman, R. Avtar and T. Ouyang, J. Environ. Manage., 270, 110871 (2020); https://doi.org/10.1016/j.jenvman.2020.110871
M. Moztahida and D.S. Lee, J. Hazard. Mater., 400, 123314 (2020); https://doi.org/10.1016/j.jhazmat.2020.123314
Y. Liu, W. Jin, Y. Zhao, G. Zhang and W. Zhang, Appl. Catal. B, 206, 642 (2017); https://doi.org/10.1016/j.apcatb.2017.01.075
F. Yang, X. Yu, K. Wang, Z. Liu, Z. Gao, T. Zhang, J. Niu, J. Zhao and B. Yao, J. Alloys Compd., 960, 170716 (2023); https://doi.org/10.1016/j.jallcom.2023.170716
P. Mandal, J. Debbarma and M. Saha, NanoBioScience, 12, 6 (2023); https://doi.org/10.33263/LIANBS121.006
Y. Yang, L. Xu, H. Wang, W. Wang and L. Zhang, Mater. Des., 108, 632 (2016); https://doi.org/10.1016/j.matdes.2016.06.104
S.K. Tiwari, R.K. Mishra, S.K. Ha and A. Huczko, ChemNanoMat, 4, 598 (2018); https://doi.org/10.1002/cnma.201800089
G.K. Ramesha, A.V. Kumara, H.B. Muralidhara and S. Sampath, J. Colloid Interf. Sci., 361, 270 (2011); https://doi.org/10.1016/j.jcis.2011.05.050
X. Wang, Y. Liu, H. Pang, S. Yu, Y. Ai, X. Ma, G. Song, T. Hayat, A. Alsaedi and X. Wang, Chem. Eng. J., 344, 380 (2018); https://doi.org/10.1016/j.cej.2018.03.107
N. Song, X.-L. Wu, S. Zhong, H. Lin and J.-R. Chen, J. Mol. Liq., 212, 63 (2015); https://doi.org/10.1016/j.molliq.2015.08.059
X. Hong, X. Wang, Y. Li, J. Fu and B. Liang, Catalysts, 10, 921 (2020); https://doi.org/10.3390/catal10080921
S. Ullah, Q. Shi, J. Zhou, X. Yang, H.Q. Ta, M. Hasan, N.M. Ahmad, L. Fu, A. Bachmatiuk and M.H. Rümmeli, Adv. Mater. Interfaces, 7, 2000999 (2020); https://doi.org/10.1002/admi.202000999
P.O. Oladoye, T.O. Ajiboye, E.O. Omotola and O.J. Oyewola, Results Eng., 16, 100678 (2022); https://doi.org/10.1016/j.rineng.2022.100678
M.D. Faysal Hossain, N. Akther and Y. Zhou, Chin. Chem. Lett., 31, 2525 (2020); https://doi.org/10.1016/j.cclet.2020.05.011
C. Tewari, G. Tatrari, S. Kumar, M. Pathak, K.S. Rawat, Y.N. Kim, B. Saha, Y.C. Jung, P. Mukhopadhyay and N.G. Sahoo, Desalination, 567, 116952 (2023); https://doi.org/10.1016/j.desal.2023.116952
S.V. Nipane, S.-W. Lee, G.S. Gokavi and A.N. Kadam, J. Mater. Sci.: Mater. Electr., 29, 16553 (2018); https://doi.org/10.1007/s10854-018-9749-x
M. Azarang, A. Bakhtiyari, R. Rakhshani, A.M. Davarpanah, M. Aliahmad and M.F. Jahantigh, Adv. Powder Technol., 32, 504 (2021); https://doi.org/10.1016/j.apt.2020.12.025
Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia and L. Xia, Chem. Eng. Res. Design, 91, 361 (2013); https://doi.org/10.1016/j.cherd.2012.07.007
G. Vinodkumar, J. Wilson, S.S.R. Inbanathan, I.V. Potheher, M. Ashokkumar and A.C. Peter, Physica B, 580, 411752 (2020); https://doi.org/10.1016/j.physb.2019.411752
Seema, Humaira, Z. Zafar and A. Samreen, Arabian J. Chem., 13, 4978 (2020); https://doi.org/10.1016/j.arabjc.2020.01.020
S. Vadivel, J. Theerthagiri, J. Madhavan and D. Maruthamani, Materials Focus, 5, 393 (2016); https://doi.org/10.1166/mat.2016.1367
T. Liu, C.O. Aniagor, M.I. Ejimofor, M.C. Menkiti, Y.M. Wakawa, J.Li, R.A. Akbour, P.-S. Yap, S.Y. Lau and J. Jeevanandam, J. Ind. Eng. Chem., 117, 21 (2023); https://doi.org/10.1016/j.jiec.2022.10.008
S. Chandra, P. Das, S. Bag, R. Bhar and P. Pramanik, Mater. Sci. Eng. B, 177, 855 (2012); https://doi.org/10.1016/j.mseb.2012.04.006
L. Zhao, S.-T. Yang, S. Feng, Q. Ma, X. Peng and D. Wu, Int. J. Environ. Res. Public Health, 14, 1301 (2017); https://doi.org/10.3390/ijerph14111301
S. Rani, M. Aggarwal, M. Kumar, S. Sharma and D. Kumar, Water Sci., 30, 51 (2016); https://doi.org/10.1016/j.wsj.2016.04.001
J.N. Tiwari, K. Mahesh, N.H. Le, K.C. Kemp, R. Timilsina, R.N. Tiwari and K.S. Kim, Carbon, 56, 173 (2013); https://doi.org/10.1016/j.carbon.2013.01.001
M.E. Mahmoud, M.S. Abdelwahab and G.A.A. Ibrahim, Mater. Chem. Phys., 301, 127638 (2023); https://doi.org/10.1016/j.matchemphys.2023.127638
S. Minisha and P. Rajakani, ChemistrySelect, 8, e202300816 (2023); https://doi.org/10.1002/slct.202300816
A. Kanwal, T. Shahzadi, T. Riaz, M. Zaib, S. Khan, M.A. Habila and M. Sillanpaa, Molecules, 28, 6474 (2023); https://doi.org/10.3390/molecules28186474
S.-H. Kim, D.-S. Kim, H. Moradi, Y.-Y. Chang and J.-K. Yang, J. Environ. Chem. Eng., 11, 109278 (2023); https://doi.org/10.1016/j.jece.2023.109278
X. Liu, Y. Guo, C. Zhang, X. Huang, K. Ma and Y. Zhang, Sep. Purif. Tech., 286, 120400 (2022); https://doi.org/10.1016/j.seppur.2021.120400
P.L. Yap, M.J. Nine, K. Hassan, T.T. Tung, D.N.H. Tran and D. Losic, Adv. Funct. Mater., 31, 2007356 (2021); https://doi.org/10.1002/adfm.202007356
I. Ali, A.A. Basheer, X.Y. Mbianda, A. Burakov, E. Galunin, I. Burakova, E. Mkrtchyan, A. Tkachev and V. Grachev, Environ. Int., 127, 160 (2019); https://doi.org/10.1016/j.envint.2019.03.029
P. Bradder, S.K. Ling, S. Wang and S. Liu, J. Chem. Eng. Data, 56, 138 (2011); https://doi.org/10.1021/je101049g
M.D. Murcia, A.M. Hidalgo, M. Gómez, G. León, E. Gómez and M. Martínez, Materials, 16, 1369 (2023); https://doi.org/10.3390/ma16041369
H. Li, J. Fan, Z. Shi, M. Lian, M. Tian and J. Yin, Polymer, 60, 96 (2015); https://doi.org/10.1016/j.polymer.2014.12.069
P. Sharma, B.K. Saikia and M.R. Das, Colloids Surf. A: Physicochem. Eng. Asp., 457, 125 (2014); https://doi.org/10.1016/j.colsurfa.2014.05.054
P.N. Diagboya, B.I. Olu-Owolabi, D. Zhou, B.-H. Han, Carbon, 79, 174 (2014); https://doi.org/10.1016/j.carbon.2014.07.057
J.A. González, M.E. Villanueva, L.L. Piehl and G.J. Copello, Chem. Eng. J., 280, 41 (2015); https://doi.org/10.1016/j.cej.2015.05.112
Q. Wu, C. Feng, C. Wang and Z. Wang, Colloids Surf. B Biointerface, 101, 210 (2013); https://doi.org/10.1016/j.colsurfb.2012.05.036
Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun and S. Wang, Chem. Eng. J., 184, 326 (2012); https://doi.org/10.1016/j.cej.2011.12.017
J.-H. Deng, Z.-R. Zhang, G.-M. Zeng, J.-L. Gong, Q.-Y. Niu and J. Liang, Chem. Eng. J., 226, 189 (2013); https://doi.org/10.1016/j.cej.2013.04.045
M. Çelebi and E.G. Sögüt, Turk. J. Chem., 46, 1577 (2022); https://doi.org/10.55730/1300-0527.3462
S. Wang, J. Wei, S. Lv, Z. Guo and F. Jiang, Clean: Soil, Air, Water, 41, 992 (2013); https://doi.org/10.1002/clen.201200460
G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao and J. Wang, J. Mater. Chem., 22, 1033 (2012); https://doi.org/10.1039/C1JM13433G
Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, Z. Li, N. Pan and X. Wang, J. Mater. Chem., 22, 3527 (2012); https://doi.org/10.1039/c2jm15544c
W. Fan, W. Gao, C. Zhang, W.W. Tjiu, J. Pan and T. Liu, J. Mater. Chem., 22, 25108 (2012); https://doi.org/10.1039/c2jm35609k
J. Liu, H. Cao, J. Xiong and Z. Cheng, Cryst. Eng. Commun., 14, 5140 (2012); https://doi.org/10.1039/c2ce25578b
H. Sun, L. Cao and L. Lu, Nano Res., 4, 550 (2011); https://doi.org/10.1007/s12274-011-0111-3
C. Li, D. Dong, J. Yang, Y. Li and C. Huang, J. Mol. Liq., 196, 348 (2014); https://doi.org/10.1016/j.molliq.2014.04.010
K.R. Parmar, I. Patel, S. Basha and Z.V.P. Murthy, J. Mater. Sci., 49, 6772 (2014); https://doi.org/10.1007/s10853-014-8378-x
S.V. Nipane, P.V. Korake and G.S. Gokavi, Ceram. Int., 41, 4549 (2015); https://doi.org/10.1016/j.ceramint.2014.11.151
D. Lu, Y. Zhang, S. Lin, L. Wang and C. Wang, J. Alloys Compd., 579, 336 (2013); https://doi.org/10.1016/j.jallcom.2013.06.098
B. Mao, B. Sidhureddy, A.R. Thiruppathi, P.C. Wood and A. Chen, New J. Chem., 44, 4519 (2020); https://doi.org/10.1039/C9NJ05895H
H. Han, W. Wei, Z. Jiang, J. Lu, J. Zhu and J. Xie, Colloids Surf. A, 509, 539 (2016); https://doi.org/10.1016/j.colsurfa.2016.09.056
J.A. Buledi, A.R. Solangi, A. Mallah, S.S. Hassan, S.T.H. Sherazi, Sirajuddin and M.R. Shah, J. Mater. Sci.: Mater. Electr., 34, 618 (2023); https://doi.org/10.1007/s10854-023-10061-1
Y. Wang, Y. Pei, W. Xiong, T. Liu, J. Li, S. Liu and B. Li, Int. J. Biol. Macromol., 81, 477 (2015); https://doi.org/10.1016/j.ijbiomac.2015.08.037
M. Wang, J. Huang, Z. Tong, W. Li and J. Chen, J. Alloys Compd., 568, 26 (2013); https://doi.org/10.1016/j.jallcom.2013.03.019
L. Gan, B. Li, Y. Chen, B. Yu and Z. Chen, Chemosphere, 219, 148 (2019); https://doi.org/10.1016/j.chemosphere.2018.11.181
K. Sheng, D. Li and X. Yuan, J. Build. Eng., 43, 103166 (2021); https://doi.org/10.1016/j.jobe.2021.103166
S. Filice, D. D'Angelo, S. Libertino, I. Nicotera, V. Kosma, V. Privitera and S. Scalese, Carbon, 82, 489 (2015); https://doi.org/10.1016/j.carbon.2014.10.093
Y. Li, J. Sun, Q. Du, L. Zhang, X. Yang, S. Wu, Y. Xia, Z. Wang, L. Xia, and A. Cao, Carbohydr. Polym., 102, 755 (2014); https://doi.org/10.1016/j.carbpol.2013.10.094
T.S. Vo and T.T.BC. Vo, Prog. Nat. Sci.: Mater. Int., 32, 634 (2022); https://doi.org/10.1016/j.pnsc.2022.05.004
Z.-Y. Sui, Y. Cui, J.-H. Zhu and B.-H. Han, ACS Appl. Mater. Interf., 5, 9172 (2013); https://doi.org/10.1021/am402661t
S.H. Hsieh, W.J. Chen and C.T. Wu, Appl. Surf. Sci., 340, 9 (2015); https://doi.org/10.1016/j.apsusc.2015.02.184
Y. Yao, Y. Cai, F. Lu, F. Wei, X. Wang, and S. Wang, J. Hazard. Mater., 270, 61 (2014); https://doi.org/10.1016/j.jhazmat.2014.01.027
P. Shi, R. Su, S. Zhu, M. Zhu, D. Li and S. Xu, J. Hazard. Mater., 229, 331 (2012); https://doi.org/10.1016/j.jhazmat.2012.06.007
X. Rong, F. Qiu, J. Qin, H. Zhao, J. Yan and D. Yang, J. Ind. Eng. Chem., 26, 354 (2015); https://doi.org/10.1016/j.jiec.2014.12.009
X. Wang, Z. Liu, X. Ye, K. Hu, H. Zhong, J. Yu, M. Jin and Z. Guo, Appl. Surf. Sci., 308, 82 (2014); https://doi.org/10.1016/j.apsusc.2014.04.103
W. Wang, Y. Cheng, T. Kong and G. Cheng, J. Hazard. Mater., 299, 50 (2015); https://doi.org/10.1016/j.jhazmat.2015.06.010
D.R. Rout, H.M. Jena, O. Baigenzhenov and A. Hosseini-Bandegharaei, Sci. Total Environ., 863, 160871 (2023); https://doi.org/10.1016/j.scitotenv.2022.160871
R.D. Huelsmann, C. Will and E. Carasek, J. Sep. Sci., 44, 1148 (2021); https://doi.org/10.1002/jssc.202000923
G. Ersan, O.G. Apul, F. Perreault and T. Karanfil, Water Res., 126, 385 (2017); https://doi.org/10.1016/j.watres.2017.08.010
H. Tang, Y. Zhao, S. Shan, X. Yang, D. Liu, F. Cui and B. Xing, Environ. Sci.: Nano, 5, 2357 (2018) https://doi.org/10.1039/C8EN00384J
J.F. Gonthier, S.N. Steinmann, L. Roch, A. Ruggi, N. Luisier, K. Severin and C. Corminboeuf, Chem. Commun., 48, 9239 (2012); https://doi.org/10.1039/c2cc33886f
P. Hu, H. Su, Z. Chen, C. Yu, Q. Li, B. Zhou, P.J.J. Alvarez and M. Long, Environ. Sci. Technol., 51, 11288 (2017); https://doi.org/10.1021/acs.est.7b03014
L. Yu, X. Wu, Q. Liu, L. Liu, X. Jiang, J. Yu, C. Feng and M. Zhong, J. Nanosci. Nanotechnol., 16, 12426 (2016); https://doi.org/10.1166/jnn.2016.12974
Y. Li, Q. Wang, L. Liu, S. Tabassum, J. Sun and Y. Hong, Sci. Total Environ., 759, 143523 (2021); https://doi.org/10.1016/j.scitotenv.2020.143523
J. Kwon and B. Lee, Chem. Eng. Res. Design, 104, 519 (2015); https://doi.org/10.1016/j.cherd.2015.09.007
C.-C. Fu, R.-S. Juang, M.M. Huq and C.-T. Hsieh, J. Taiwan Instit. Chem. Eng., 67, 338 (2016); https://doi.org/10.1016/j.jtice.2016.07.043
M. Mukherjee, S. Goswami, P. Banerjee, S. Sengupta, P. Das, Prasanta K. Banerjee and S. Datta, Environ. Technol. Innov., 13, 398 (2019); https://doi.org/10.1016/j.eti.2016.11.006
Z. Gong, S. Li, W. Han, J. Wang, J. Ma and X. Zhang, Appl. Surf. Sci., 362, 459 (2016); https://doi.org/10.1016/j.apsusc.2015.11.251
S. Yu, X. Wang, W. Yao, J. Wang, Y. Ji, Y. Ai, A. Alsaedi, T. Hayat and X. Wang, Environ. Sci. Technol., 51, 3278 (2017); https://doi.org/10.1021/acs.est.6b06259
Y. Wang, X. Wei, Y. Qi and H. Huang, Chemosphere, 263, 127563 (2021); https://doi.org/10.1016/j.chemosphere.2020.127563
X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, Z.H. Zhang, Y. Wu, Y.X. Ge and D.D. Wang, Materials & Design, 140, 431 (2018); https://doi.org/10.1016/j.matdes.2017.12.016
Z.-H. Chen, Z. Liu, J.-Q. Hu, Q.-W. Cai, X.-Y. Li, W. Wang, Y. Faraj, X.-J. Ju, R. Xie and L.-Y. Chu, J. Membr. Sci., 595, 117510 (2020); https://doi.org/10.1016/j.memsci.2019.117510
X. Wang, Y. Qin, L. Zhu and H. Tang, Environ. Sci. Technol., 49, 6855 (2015); https://doi.org/10.1021/acs.est.5b01059
W. Sun, C. Wang, W. Pan, S. Li and B. Chen, Environ. Sci.: Nano, 4, 1377 (2017); https://doi.org/10.1039/C7EN00295E
V.K. Gupta, S. Agarwal, H. Sadegh, G.A.M. Ali, A.K. Bharti and A.S.H. Makhlouf, J. Mol. Liq., 237, 466 (2017); https://doi.org/10.1016/j.molliq.2017.04.113
M.A. Ahsan, V. Jabbari, M.T. Islam, R.S. Turley, N. Dominguez, H. Kim, E. Castro, J.A. Hernandez-Viezcas, M.L. Curry, J. Lopez, J.L. GardeaTorresdey and J.C. Noveron, Sci. Total Environ., 673, 306 (2019); https://doi.org/10.1016/j.scitotenv.2019.03.219
Y. Kuang, R. Yang, Z. Zhang, J. Fang, M. Xing and D. Wu, Chemosphere, 236, 124416 (2019); https://doi.org/10.1016/j.chemosphere.2019.124416
Y. Zhang, Z. Chen, L. Zhou, P. Wu, Y. Zhao, Y. Lai and F. Wang, Environ. Pollut., 244, 93 (2019); https://doi.org/10.1016/j.envpol.2018.10.028
A. Abu-Nada, A. Abdala and G. McKay, J. Environ. Chem. Eng., 9, 1058585 (2021); https://doi.org/10.1016/j.jece.2021.105858
Q. Zhang, Y.-L. Zhou, B.Z. Wang and J.-M. Hong, Catalysis Lett., 151, 3170 (2021); https://doi.org/10.1007/s10562-021-03553-4
Z. Wu, X. Yuan, H. Zhong, H. Wang, G. Zeng, X. Chen, H. Wang, L. Zhang and J. Shao, Scient. Rep., 6, 25638 (2016); https://doi.org/10.1038/srep25638
F. Yu, X. Bai, C. Yang, L. Xu and J. Ma, Catalysts, 9, 607 (2019); https://doi.org/10.3390/catal9070607
A. Mehrizad, K. Zare, H. Aghaie and S. Dastmalchi, Int. J. Environ. Sci. Technol., 9, 355 (2012); https://doi.org/10.1007/s13762-012-0038-6
X. Wang, S. Huang, L. Zhu, X. Tian, S. Li and H. Tang, Carbon, 69, 101 (2014); https://doi.org/10.1016/j.carbon.2013.11.070
C. Zhang, X. Wang, Z. Ma, Z. Luan, Y. Wang, Z. Wang and L. Wang Environ. Chem. Lett., 18, 377 (2020); https://doi.org/10.1007/s10311-019-00953-2