Copyright (c) 2023 PRIYA PERUMAL, LAKSHMI MAHADEVAN
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photocatalytic Studies and Antibacterial Activity of Copper thiotungstate/ Reduced Graphine Oxide Nanocomposites (Cu2WS4/rGO)
Corresponding Author(s) : LAKSHMI MAHADEVAN
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
A copper tungsten sulfide (Cu2WS4)-anchored reduced graphene oxide (Cu2WS4/rGO) nanocomposite was prepared using a feasible hydrothermal approach and succssfully employed as photocatalytic material for the degradation of reactive black-5 (RB-5) dye. In the preparation of Cu2WS4 and Cu2WS4/rGO nanocomposite, copper nitrate, tungsten oxalate, metallic sulfur, graphene oxide, sodium hydroxide and sodium borohydride were used as sources of precursors. The prepared materials (Cu2WS4 and Cu2WS4/rGO) were characterized by powder X-ray diffraction (PXRD), DRS-UV, FT-IR and Raman spectral analysis, whereas, the morphology and composition of Cu2WS4 and Cu2WS4/rGO were determined by TEM, FESEM and EDAX analyses. Under visible light conditions with a band gap of 1.8 eV, the degradation capacity of Cu2WS4/rGO nanocomposite towards reactive black-5 dye was enhanced and a dragadation efficiency of 98.2% was achieved at 120 min. The antimicrobial activity results of Cu2WS4/rGO nanocomposite showed that the prepared nanocomposites exhibit improved antibacterial activity 20% (S. aureus) and 10% (P. aeruginosa) growth inhibition
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Duraisamy, V. Sudha, V. Dharuman and S.M. Senthil Kumar, ACS Biomater. Sci. Eng., 9, 1682 (2023); https://doi.org/10.1021/acsbiomaterials.2c01248
- V. Duraisamy, N. Arumugam, A.I. Almansour, Y. Wang, T.X. Liu and S.M.S. Kumar, Colloids Surf. A Physicochem. Eng. Asp., 656, 130347 (2023); https://doi.org/10.1016/j.colsurfa.2022.130347
- M. Mahanthappa, V. Duraisamy, P. Arumugam and S.M. Senthil Kumar, ACS Appl. Nano Mater., 5, 18417 (2022); https://doi.org/10.1021/acsanm.2c04170
- M.P. Kusturic, M. Jevtic and J.T. Ristovski, Front. Environ. Sci., 10, 1077974 (2022); https://doi.org/10.3389/fenvs.2022.1077974
- D.P. Mohapatra, S.K. Brar, R.D. Tyagi and R.Y. Surampalli, Chemosphere, 78, 923 (2010); https://doi.org/10.1016/j.chemosphere.2009.12.053
- S.H. Kim, S. Chun, J.Y. Jang, H.D. Chae, C.-H. Kim and B.M. Kang, Fertil Steril., 95, 357 (2011); https://doi.org/10.1016/j.fertnstert.2010.07.1059
- M. Saranya and A. Nirmala Grace, J. Nano Res., 18-19, 43 (2012); https://doi.org/10.4028/www.scientific.net/JNanoR.18-19.43
- A. Shawky, S.M. El-Sheikh, A. Gaber, S.I. El-Hout, I.M. El-Sherbiny and A.I. Ahmed, Appl. Nanosci., 10, 2153 (2020); https://doi.org/10.1007/s13204-020-01283-4
- K. Krishnamoorthy, G. Kumar Veerasubramani, A.N. Rao and S. Jae Kim, Mater. Res. Express, 1, 035006 (2014); https://doi.org/10.1088/2053-1591/1/3/035006
- P.O. Fadojutimi, S.S. Gqoba, Z.N. Tetana and J. Moma, Catalysts, 12, 468 (2002); https://doi.org/10.3390/catal12050468
- E.C. Okpara, O.C. Olatunde, O.B. Wojuola and D.C. Onwudiwe, Environ. Adv., 11, 100341 (2023). https://doi.org/10.1016/j.envadv.2023.100341
- L. Nie and Q. Zhang, Inorg. Chem. Front., 4, 1953 (2017); https://doi.org/10.1039/C7QI00651A
- K. Mensah-Darkwa, D.N. Ampong, E. Agyekum, F.M. de Souza and R.K. Gupta, Energies, 15, 4052 (2022); https://doi.org/10.3390/en15114052
- A. Mondal, A. Prabhakaran, S. Gupta and V.R. Subramanian, ACS Omega, 6, 8734 (2021); https://doi.org/10.1021/acsomega.0c06045
- R.A. El-Gendy, H.M. El-Bery, M. Farrag and D.M. Fouad, Sci. Rep., 13, 7994 (2023); https://doi.org/10.1038/s41598-023-34743-2
- J. Shi, X. Zhou, Y. Liu, Q. Su, J. Zhang and G. Du, Mater. Lett., 126, 220 (2014); https://doi.org/10.1016/j.matlet.2014.04.051
- Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 133, 7296 (2011); https://doi.org/10.1021/ja201269b
- J. Jeon, J.W. Jeong and Y.S. Jung, Electron. Mater. Lett., 15, 613 (2019); https://doi.org/10.1007/s13391-019-00153-8
- P. Arumugam, P. Sengodan, N. Duraisamy, R. Rajendran and V. Vasudevan, Ionics, 26, 4201 (2020); https://doi.org/10.1007/s11581-020-03564-y
- S. Dutta, S. Chatterjee, I. Mukherjee, R. Saha and B.P. Singh, Ind. Eng. Chem. Res., 56, 4768 (2017); https://doi.org/10.1021/acs.iecr.7b00107
- V.S. Perera, N.P. Wickramaratne, M. Jaroniec and S.D. Huang, J. Mater. Chem. B Mater. Biol. Med., 2, 257 (2014); https://doi.org/10.1039/C3TB20962H
- W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak and K.H. Wong, J. Mater. Chem. A Mater. Energy Sustain., 1, 3182 (2013); https://doi.org/10.1039/c3ta00357d
- S. Vadivel, B. Paul, A. Habibi-Yangjeh, D. Maruthamani, M. Kumaravel and T. Maiyalagan, J. Phys. Chem. Solids, 123, 242 (2018); https://doi.org/10.1016/j.jpcs.2018.08.011
- S. Yao, L. Xu, Q. Gao, X. Wang, N. Kong, W. Li, J. Wang, G. Li and X. Pu, J. Alloys Compd., 704, 469 (2017); https://doi.org/10.1016/j.jallcom.2017.02.069
- J. Wu, J. He, F. Li and X. Hu, Catal. Lett., 147, 215 (2017); https://doi.org/10.1007/s10562-016-1907-2
- Q. Jia, Y.C. Zhang, J. Li, Y. Chen and B. Xu, Mater. Lett., 117, 24 (2014); https://doi.org/10.1016/j.matlet.2013.11.110
- R. Rameshbabu, R. Vinoth, M. Navaneethan, S. Harish, Y. Hayakawa and B. Neppolian, Appl. Surf. Sci., 418, 128 (2017); https://doi.org/10.1016/j.apsusc.2017.02.126
- G. Gnanamoorthy, P. Priya, D. Ali, M. Lakshmi, V.K. Yadav and R. Varghese, Chem. Phys. Lett., 781, 139011 (2021); https://doi.org/10.1016/j.cplett.2021.139011
- M. Yildirim, F. Özel, A. Sarilmaz, A. Aljabour and I.H. Patir, J. Mater. Sci. Mater. Electron., 28, 6712 (2017); https://doi.org/10.1007/s10854-017-6365-0
- I.H. Patir, E. Aslan, G. Yanalak, M. Karaman, A. Sarilmaz, M. Can, M. Can and F. Ozel, Int. J. Hydrogen Energy, 44, 1441 (2019); https://doi.org/10.1016/j.ijhydene.2018.11.161
- Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen and C. Li, Chem. Commun., 3, 2142 (2003); https://doi.org/10.1039/b306813g
References
V. Duraisamy, V. Sudha, V. Dharuman and S.M. Senthil Kumar, ACS Biomater. Sci. Eng., 9, 1682 (2023); https://doi.org/10.1021/acsbiomaterials.2c01248
V. Duraisamy, N. Arumugam, A.I. Almansour, Y. Wang, T.X. Liu and S.M.S. Kumar, Colloids Surf. A Physicochem. Eng. Asp., 656, 130347 (2023); https://doi.org/10.1016/j.colsurfa.2022.130347
M. Mahanthappa, V. Duraisamy, P. Arumugam and S.M. Senthil Kumar, ACS Appl. Nano Mater., 5, 18417 (2022); https://doi.org/10.1021/acsanm.2c04170
M.P. Kusturic, M. Jevtic and J.T. Ristovski, Front. Environ. Sci., 10, 1077974 (2022); https://doi.org/10.3389/fenvs.2022.1077974
D.P. Mohapatra, S.K. Brar, R.D. Tyagi and R.Y. Surampalli, Chemosphere, 78, 923 (2010); https://doi.org/10.1016/j.chemosphere.2009.12.053
S.H. Kim, S. Chun, J.Y. Jang, H.D. Chae, C.-H. Kim and B.M. Kang, Fertil Steril., 95, 357 (2011); https://doi.org/10.1016/j.fertnstert.2010.07.1059
M. Saranya and A. Nirmala Grace, J. Nano Res., 18-19, 43 (2012); https://doi.org/10.4028/www.scientific.net/JNanoR.18-19.43
A. Shawky, S.M. El-Sheikh, A. Gaber, S.I. El-Hout, I.M. El-Sherbiny and A.I. Ahmed, Appl. Nanosci., 10, 2153 (2020); https://doi.org/10.1007/s13204-020-01283-4
K. Krishnamoorthy, G. Kumar Veerasubramani, A.N. Rao and S. Jae Kim, Mater. Res. Express, 1, 035006 (2014); https://doi.org/10.1088/2053-1591/1/3/035006
P.O. Fadojutimi, S.S. Gqoba, Z.N. Tetana and J. Moma, Catalysts, 12, 468 (2002); https://doi.org/10.3390/catal12050468
E.C. Okpara, O.C. Olatunde, O.B. Wojuola and D.C. Onwudiwe, Environ. Adv., 11, 100341 (2023). https://doi.org/10.1016/j.envadv.2023.100341
L. Nie and Q. Zhang, Inorg. Chem. Front., 4, 1953 (2017); https://doi.org/10.1039/C7QI00651A
K. Mensah-Darkwa, D.N. Ampong, E. Agyekum, F.M. de Souza and R.K. Gupta, Energies, 15, 4052 (2022); https://doi.org/10.3390/en15114052
A. Mondal, A. Prabhakaran, S. Gupta and V.R. Subramanian, ACS Omega, 6, 8734 (2021); https://doi.org/10.1021/acsomega.0c06045
R.A. El-Gendy, H.M. El-Bery, M. Farrag and D.M. Fouad, Sci. Rep., 13, 7994 (2023); https://doi.org/10.1038/s41598-023-34743-2
J. Shi, X. Zhou, Y. Liu, Q. Su, J. Zhang and G. Du, Mater. Lett., 126, 220 (2014); https://doi.org/10.1016/j.matlet.2014.04.051
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 133, 7296 (2011); https://doi.org/10.1021/ja201269b
J. Jeon, J.W. Jeong and Y.S. Jung, Electron. Mater. Lett., 15, 613 (2019); https://doi.org/10.1007/s13391-019-00153-8
P. Arumugam, P. Sengodan, N. Duraisamy, R. Rajendran and V. Vasudevan, Ionics, 26, 4201 (2020); https://doi.org/10.1007/s11581-020-03564-y
S. Dutta, S. Chatterjee, I. Mukherjee, R. Saha and B.P. Singh, Ind. Eng. Chem. Res., 56, 4768 (2017); https://doi.org/10.1021/acs.iecr.7b00107
V.S. Perera, N.P. Wickramaratne, M. Jaroniec and S.D. Huang, J. Mater. Chem. B Mater. Biol. Med., 2, 257 (2014); https://doi.org/10.1039/C3TB20962H
W.C. Liu, B.L. Guo, X.S. Wu, F.M. Zhang, C.L. Mak and K.H. Wong, J. Mater. Chem. A Mater. Energy Sustain., 1, 3182 (2013); https://doi.org/10.1039/c3ta00357d
S. Vadivel, B. Paul, A. Habibi-Yangjeh, D. Maruthamani, M. Kumaravel and T. Maiyalagan, J. Phys. Chem. Solids, 123, 242 (2018); https://doi.org/10.1016/j.jpcs.2018.08.011
S. Yao, L. Xu, Q. Gao, X. Wang, N. Kong, W. Li, J. Wang, G. Li and X. Pu, J. Alloys Compd., 704, 469 (2017); https://doi.org/10.1016/j.jallcom.2017.02.069
J. Wu, J. He, F. Li and X. Hu, Catal. Lett., 147, 215 (2017); https://doi.org/10.1007/s10562-016-1907-2
Q. Jia, Y.C. Zhang, J. Li, Y. Chen and B. Xu, Mater. Lett., 117, 24 (2014); https://doi.org/10.1016/j.matlet.2013.11.110
R. Rameshbabu, R. Vinoth, M. Navaneethan, S. Harish, Y. Hayakawa and B. Neppolian, Appl. Surf. Sci., 418, 128 (2017); https://doi.org/10.1016/j.apsusc.2017.02.126
G. Gnanamoorthy, P. Priya, D. Ali, M. Lakshmi, V.K. Yadav and R. Varghese, Chem. Phys. Lett., 781, 139011 (2021); https://doi.org/10.1016/j.cplett.2021.139011
M. Yildirim, F. Özel, A. Sarilmaz, A. Aljabour and I.H. Patir, J. Mater. Sci. Mater. Electron., 28, 6712 (2017); https://doi.org/10.1007/s10854-017-6365-0
I.H. Patir, E. Aslan, G. Yanalak, M. Karaman, A. Sarilmaz, M. Can, M. Can and F. Ozel, Int. J. Hydrogen Energy, 44, 1441 (2019); https://doi.org/10.1016/j.ijhydene.2018.11.161
Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen and C. Li, Chem. Commun., 3, 2142 (2003); https://doi.org/10.1039/b306813g