Copyright (c) 2023 ABERA MADISHA JAWORE, THOKOZANI XABA, ZONDI NATE, TSHEPO NTSOANE, MAKWENA JUSTICE MOLOTO
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of Reaction Parameters during the Synthesis of Hexagonal Hexadecylamine Capped ZnS Nanoparticles
Corresponding Author(s) : THOKOZANI XABA
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
Zinc sulphide nanoparticles capped with hexadecylamine (ZnS-HDA) have been synthesized through thermal decomposition of (Z)-2- (pyrrolidin-2-ylidene)thiourea zinc(II) complex. The effects of temperature, time and concentration of the precursor on the properties of ZnS-HDA capped nanoparticles were investigated. The values of the optical band edges were increasing when the temperature, reaction tim and the amount of the precursor were elevated. X-ray diffraction patterns of all the synthesized nanoparticles mainly exhibited hexagonal phase structures. The morphologies of the particles were increasing with the increase in temperature, time and precursor concentration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Mintcheva, G. Gicheva, M. Panayotova and S.A. Kulinich, Materials, 13, 171 (2020);https://doi.org/10.3390/ma13010171
- C.S. Tiwary, P. Kumbhakar, A.K. Mitra and K. Chattopadhyay, J. Lumin., 129, 1366 (2009);https://doi.org/10.1016/j.jlumin.2009.07.004
- Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis and J.Q. Xiao, J. Am. Chem. Soc., 126, 6874 (2004);https://doi.org/10.1021/ja048650g
- Z.H. Hamed, K.E.A. Ahmed and H.A. Elsheikh, Aswan Univ. J. Environ. Stud., 2, 147 (2021);https://doi.org/10.21608/AUJES.2021.66918.1014
- H.Y. Lu, S.Y. Chu and S.S. Tan, J. Cryst. Growth, 269, 385 (2004);https://doi.org/10.1016/j.jcrysgro.2004.05.050
- T.-F. Yi, Y. Li, Y.-M. Li, S. Luo and Y.-G. Liu, Solid State Ion., 343, 115074 (2019);https://doi.org/10.1016/j.ssi.2019.115074
- H. Chen, D. Shi, J. Qi, J. Jia and B. Wang, Phys. Lett. A, 373, 371 (2009);https://doi.org/10.1016/j.physleta.2008.11.060
- H. Zhang, J. Zhang, T. Xu, M. He and J. Li, RSC Adv., 3, 3535 (2013);https://doi.org/10.1039/c3ra22876b
- X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Progr. Mater. Sci., 56, 175 (2011);https://doi.org/10.1016/j.pmatsci.2010.10.001
- A.A.A. Al-Zahra and A.K.M.A. Al-Sammarraie, Chem. Methodol., 6, 67 (2022);https://doi.org/10.22034/chemm.2022.1.7
- G.H. Yue, P.X. Yan, D. Yan, X.Y. Fan, M.X. Wang, D.M. Qu and J.Z. Liu, Appl. Phys., A Mater. Sci. Process., 84, 409 (2006);https://doi.org/10.1007/s00339-006-3643-8
- S. Biswas, S. Kar and S. Chaudhuri, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 36, 33 (2006);https://doi.org/10.1080/15533170500471417
- P. Iranmanesh, S. Saeednia and M. Nourzpoor, Chin. Phys. B, 24, 046104 (2015);https://doi.org/10.1088/1674-1056/24/4/046104
- H. Moon, C. Nam, C. Kim and B. Kim, Mater. Res. Bull., 41, 2013 (2006);https://doi.org/10.1016/j.materresbull.2006.04.007
- T. Xaba, M.J. Moloto and N. Moloto, Mater. Lett., 146, 91 (2015);https://doi.org/10.1016/j.matlet.2015.01.153
- T.T.Q. Hoa, L.V. Vu, T.D. Canh and N.N. Long, J. Phys. Conf. Ser., 187, 012081 (2009);https://doi.org/10.1088/1742-6596/187/1/012081
- N.H. Abdullah, Z. Zainal, S. Silong, M.I.M. Tahir, K.-B. Tan and S.-K. Chang, Mater. Chem. Phys., 173, 33 (2016);https://doi.org/10.1016/j.matchemphys.2016.01.034
- Y. Ni, G. Yin, J. Hong and Z. Xu, Mater. Res. Bull., 39, 1967 (2004);https://doi.org/10.1016/j.materresbull.2004.01.011
- N. Soltani, E. Saion, M. Erfani, K. Rezaee, G. Bahmanrokh, G.P.C. Drummen, A. Bahrami and M.Z. Hussein, Int. J. Mol. Sci., 13, 12412 (2012);https://doi.org/10.3390/ijms131012412
- L.S. Archana and D.N. Rajendran, Mater. Today Proc., 41, 461 (2021);https://doi.org/10.1016/j.matpr.2020.05.227
- A.A. Ebnalwaled, M.H. Essai, B.M. Hasaneen and H.E. Mansour, J. Mater. Sci. Mater. Electron., 28, 1958 (2017);https://doi.org/10.1007/s10854-016-5749-x
- T. Xaba, M.J. Moloto, M. Al-Shakban, M.A. Malik, P. O’Brien and N. Moloto, Mater. Sci. Semicond. Process., 71, 109 (2017);https://doi.org/10.1016/j.mssp.2017.07.015
- C. Díaz-Cruz, G. Alonso Nuñez, H. Espinoza-Gómez and L.Z. Flores-López, Eur. Polym. J., 83, 265 (2016);https://doi.org/10.1016/j.eurpolymj.2016.08.025
- R. Finsy, Langmuir, 20, 2975 (2004);https://doi.org/10.1021/la035966d
References
N. Mintcheva, G. Gicheva, M. Panayotova and S.A. Kulinich, Materials, 13, 171 (2020);https://doi.org/10.3390/ma13010171
C.S. Tiwary, P. Kumbhakar, A.K. Mitra and K. Chattopadhyay, J. Lumin., 129, 1366 (2009);https://doi.org/10.1016/j.jlumin.2009.07.004
Y. Zhao, Y. Zhang, H. Zhu, G.C. Hadjipanayis and J.Q. Xiao, J. Am. Chem. Soc., 126, 6874 (2004);https://doi.org/10.1021/ja048650g
Z.H. Hamed, K.E.A. Ahmed and H.A. Elsheikh, Aswan Univ. J. Environ. Stud., 2, 147 (2021);https://doi.org/10.21608/AUJES.2021.66918.1014
H.Y. Lu, S.Y. Chu and S.S. Tan, J. Cryst. Growth, 269, 385 (2004);https://doi.org/10.1016/j.jcrysgro.2004.05.050
T.-F. Yi, Y. Li, Y.-M. Li, S. Luo and Y.-G. Liu, Solid State Ion., 343, 115074 (2019);https://doi.org/10.1016/j.ssi.2019.115074
H. Chen, D. Shi, J. Qi, J. Jia and B. Wang, Phys. Lett. A, 373, 371 (2009);https://doi.org/10.1016/j.physleta.2008.11.060
H. Zhang, J. Zhang, T. Xu, M. He and J. Li, RSC Adv., 3, 3535 (2013);https://doi.org/10.1039/c3ra22876b
X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, Progr. Mater. Sci., 56, 175 (2011);https://doi.org/10.1016/j.pmatsci.2010.10.001
A.A.A. Al-Zahra and A.K.M.A. Al-Sammarraie, Chem. Methodol., 6, 67 (2022);https://doi.org/10.22034/chemm.2022.1.7
G.H. Yue, P.X. Yan, D. Yan, X.Y. Fan, M.X. Wang, D.M. Qu and J.Z. Liu, Appl. Phys., A Mater. Sci. Process., 84, 409 (2006);https://doi.org/10.1007/s00339-006-3643-8
S. Biswas, S. Kar and S. Chaudhuri, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 36, 33 (2006);https://doi.org/10.1080/15533170500471417
P. Iranmanesh, S. Saeednia and M. Nourzpoor, Chin. Phys. B, 24, 046104 (2015);https://doi.org/10.1088/1674-1056/24/4/046104
H. Moon, C. Nam, C. Kim and B. Kim, Mater. Res. Bull., 41, 2013 (2006);https://doi.org/10.1016/j.materresbull.2006.04.007
T. Xaba, M.J. Moloto and N. Moloto, Mater. Lett., 146, 91 (2015);https://doi.org/10.1016/j.matlet.2015.01.153
T.T.Q. Hoa, L.V. Vu, T.D. Canh and N.N. Long, J. Phys. Conf. Ser., 187, 012081 (2009);https://doi.org/10.1088/1742-6596/187/1/012081
N.H. Abdullah, Z. Zainal, S. Silong, M.I.M. Tahir, K.-B. Tan and S.-K. Chang, Mater. Chem. Phys., 173, 33 (2016);https://doi.org/10.1016/j.matchemphys.2016.01.034
Y. Ni, G. Yin, J. Hong and Z. Xu, Mater. Res. Bull., 39, 1967 (2004);https://doi.org/10.1016/j.materresbull.2004.01.011
N. Soltani, E. Saion, M. Erfani, K. Rezaee, G. Bahmanrokh, G.P.C. Drummen, A. Bahrami and M.Z. Hussein, Int. J. Mol. Sci., 13, 12412 (2012);https://doi.org/10.3390/ijms131012412
L.S. Archana and D.N. Rajendran, Mater. Today Proc., 41, 461 (2021);https://doi.org/10.1016/j.matpr.2020.05.227
A.A. Ebnalwaled, M.H. Essai, B.M. Hasaneen and H.E. Mansour, J. Mater. Sci. Mater. Electron., 28, 1958 (2017);https://doi.org/10.1007/s10854-016-5749-x
T. Xaba, M.J. Moloto, M. Al-Shakban, M.A. Malik, P. O’Brien and N. Moloto, Mater. Sci. Semicond. Process., 71, 109 (2017);https://doi.org/10.1016/j.mssp.2017.07.015
C. Díaz-Cruz, G. Alonso Nuñez, H. Espinoza-Gómez and L.Z. Flores-López, Eur. Polym. J., 83, 265 (2016);https://doi.org/10.1016/j.eurpolymj.2016.08.025
R. Finsy, Langmuir, 20, 2975 (2004);https://doi.org/10.1021/la035966d