Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Protein Misfolding, Associated Diseases and Potential Therapeutic Routes: A Mini Review
Corresponding Author(s) : Pritha Mandal
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
Correctly folded proteins play key role in all biological reactions. Folding of protein into its native structure is the most astonishing example of biological self-assembly. Gene mutation, translational or transcriptional error, failure of chaperon mechanism results in misfolded protein structure. Misfolded proteins are responsible for a number of human diseases namely Alzheimer’s disease or Parkinson’s disease. Research for finding therapeutic breakthrough against these ailments has invoked different strategies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.M. Dobson, Semin. Cell Dev. Biol., 15, 3 (2004); https://doi.org/10.1016/j.semcdb.2003.12.008.
- A. Szilagyi, J. Kardos, S. Osvath, L. Barna and P. Zavodszky, eds. A. Lajth, and N. Banik, Protein Folding, In: Handbook of Neurochemistry and Molecular Neurobiology, Springer, vol. 7, pp. 303-344 (2007).
- R.J. Ellis, eds.: B. Henderson, and A.G. Pockley, Chaperone Function: The Orthodox View, In: Molecular Chaperones and Cell Signaling, Cambridge University Press, pp. 3-21 (2005).
- C.M. Dobson, Nature, 426, 884 (2003); https://doi.org/10.1038/nature02261.
- M.L. Anson and A.E. Mirsky, J. Gen. Physiol., 9, 169 (1925); https://doi.org/10.1085/jgp.9.2.169.
- C.B. Anfinsen, E. Haber, M. Sela and F.H. White, Proc. Natl. Acad. Sci. USA, 47, 1309 (1961); https://doi.org/10.1073/pnas.47.9.1309.
- C. Levinthal, J. Chim. Phys., 65, 44 (1968); https://doi.org/10.1051/jcp/1968650044.
- D.B. Wetlaufer, Proc. Natl. Acad. Sci. USA, 70, 697 (1973); https://doi.org/10.1073/pnas.70.3.697.
- M. Karplus and D.L. Weaver, Nature, 260, 404 (1976); https://doi.org/10.1038/260404a0.
- R.L. Baldwin, Trends Biochem. Sci., 14, 291 (1989); https://doi.org/10.1016/0968-0004(89)90067-4.
- K.A. Dill, Biochemistry, 24, 1501 (1985); https://doi.org/10.1021/bi00327a032.
- S.C. Harrison and R. Durbin, Proc. Natl. Acad. Sci. USA, 82, 4028 (1985); https://doi.org/10.1073/pnas.82.12.4028.
- R.L. Baldwin, Nature, 369, 183 (1994); https://doi.org/10.1038/369183a0.
- J.N. Onuchic, H. Nymeyer, A.E. García, J. Chahine and N.D. Socci, Adv. Protein Chem., 53, 87 (2000); https://doi.org/10.1016/S0065-3233(00)53003-4.
- C.M. Dobson, A. Sali and M. Karplus, Angew. Chem. Int. Ed., 37, 868 (1998); https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<868::AIDANIE868>3.0.CO;2-H.
- K.A. Dill and H.S. Chan, Nat. Struct. Biol., 4, 10 (1997); https://doi.org/10.1038/nsb0197-10.
- A.R. Dinner, A. Sali, L.J. Smith, C.M. Dobson and M. Karplus, Trends Biochem. Sci., 25, 331 (2000); https://doi.org/10.1016/S0968-0004(00)01610-8.
- P.G. Wolynes, J.N. Onuchic and D. Thirumalai, Science, 267, 1619 (1995); https://doi.org/10.1126/science.7886447.
- K.P. Wong and C. Tanford, J. Biol. Chem., 248, 8518 (1973).
- K. Kuwajima, K. Nitta, M. Yoneyama and S. Sugai, J. Mol. Biol., 106, 359 (1976); https://doi.org/10.1016/0022-2836(76)90091-7.
- A.R. Molla, S.S. Maity, S. Ghosh and D.K. Mandal, Biochimie, 91, 857 (2009); https://doi.org/10.1016/j.biochi.2009.04.006.
- P. Mandal, A.R. Molla and D.K. Mandal, J. Biochem., 154, 531 (2013); https://doi.org/10.1093/jb/mvt084.
- M.M. Lyles and H.F. Gilbert, Biochem., 30, 619 (1991); https://doi.org/10.1021/bi00217a005.
- F.X. Schmid, Annu. Rev. Biophys. Biomol. Struct., 22, 123 (1993); https://doi.org/10.1146/annurev.bb.22.060193.001011.
- Y.E. Kim, M.S. Hipp, A. Bracher, M. Hayer-Hartl and F. Ulrich-Hartl, Annu. Rev. Biochem., 82, 323 (2013); https://doi.org/10.1146/annurev-biochem-060208-092442.
- F.U. Hartl and M. Hayer-Hartl, Sci., 295, 1852 (2002); https://doi.org/10.1126/science.1068408.
- M.P. Mayer, Mol. Cell, 39, 321 (2010); https://doi.org/10.1016/j.molcel.2010.07.012.
- C. Hammond and A. Helenius, Curr. Opin. Cell Biol., 7, 523 (1995); https://doi.org/10.1016/0955-0674(95)80009-3.
- R.J. Kaufman, D. Scheuner, M. Schröder, X. Shen, K. Lee, C.Y. Liu and S.M. Arnold, Nat. Rev. Mol. Cell Biol., 3, 411 (2002); https://doi.org/10.1038/nrm829.
- U. Schubert, L.C. Antón, J. Gibbs, C.C. Norbury, J.W. Yewdell and J.R. Bennink, Nature, 404, 770 (2000); https://doi.org/10.1038/35008096.
- T.N. Shamsi, T. Athar, R. Parveen and S. Fatima, Int. J. Biol. Macromol., 105, 993 (2017); https://doi.org/10.1016/j.ijbiomac.2017.07.116.
- M.K. Siddiqi, P. Alam, S.K. Chaturvedi, Y.E. Shahein and R.H. Khan, Front. Biosci., 9, 1 (2017).
- P. Alam, K. Siddiqi, S.K. Chturvedi and R.H. Khan, Int. J. Biol. Macromol., 103, 208 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.048.
- I. Moreno-Gonzalez and C. Soto, Semin. Cell Dev. Biol., 22, 482 (2011); https://doi.org/10.1016/j.semcdb.2011.04.002.
- B. Ciani, E.G. Hutchinson, R.B. Sessions and D.N. Woolfson, J. Biol. Chem., 277, 10150 (2002); https://doi.org/10.1074/jbc.M107663200.
- F. Chiti, M. Stefani, N. Taddei, G. Ramponi and C.M. Dobson, Nature, 424, 805 (2003); https://doi.org/10.1038/nature01891.
- T. Konno, Biochem., 40, 2148 (2001); https://doi.org/10.1021/bi002156h.
- V. Kumar, N. Sami, T. Kashav, A. Islam, F. Ahmad and M.I. Hassan, Eur. J. Med. Chem., 124, 1105 (2016); https://doi.org/10.1016/j.ejmech.2016.07.054.
- D.M. Walsh and D.J. Selkoe, J. Neurochem., 101, 1172 (2007); https://doi.org/10.1111/j.1471-4159.2006.04426.x.
- B. Caughey and P.T. Lansbury Jr., Annu. Rev. Neurosci., 26, 267 (2003); https://doi.org/10.1146/annurev.neuro.26.010302.081142.
- V. Fodera, A. Zaccone, M. Lattuada and A.M. Donald, Phys. Rev. Lett., 111, 108105 (2013); https://doi.org/10.1103/PhysRevLett.111.108105.
- M.R.H. Krebs, K.R. Domike and A.M. Donald, Biochem. Soc. Trans., 37, 682 (2009); https://doi.org/10.1042/BST0370682.
- M.I. Smith, V. Fodera, J.S. Sharp, C.J. Roberts and A.M. Donald, Colloids Surf. B Biointerfaces, 89, 216 (2012); https://doi.org/10.1016/j.colsurfb.2011.09.018.
- V. Vetri and V. Foderà, FEBS Lett., 589(19PartA), 2448 (2015); https://doi.org/10.1016/j.febslet.2015.07.006.
- M.G. Ulep, S.K. Saraon and S. McLea, J. Nurse Pract., 14, 129 (2018); https://doi.org/10.1016/j.nurpra.2017.10.014.
- C.X. Gong and K. Iqbal, Curr. Med. Chem., 15, 2321 (2008); https://doi.org/10.2174/092986708785909111.
- R.A. Liddle, Brain Res., 1693, 201 (2018); https://doi.org/10.1016/j.brainres.2018.01.010.
- M. Goedert, Science, 349, 1255555 (2015); https://doi.org/10.1126/science.1255555.
- J.A. Steiner, E. Angot and P. Brundin, Cell Death Differ., 18, 1425 (2011); https://doi.org/10.1038/cdd.2011.53.
- R. Ghosh and S.J. Tabrizi, Handb. Clin. Neurol., 147, 255 (2018); https://doi.org/10.1016/B978-0-444-63233-3.00017-8.
- T.H. Mok and S. Mead, Medicine, 45, 674 (2017); https://doi.org/10.1016/j.mpmed.2017.08.007.
- J.W. Ironside, D.L. Ritchie and M.W. Head, Handb. Clin. Neurol., 145, 393 (2018); https://doi.org/10.1016/B978-0-12-802395-2.00028-6.
- M.B. Pepys, P.N. Hawkins, D.R. Booth, D.M. Vigushin, G.A. Tennent, A.K. Soutar, N. Totty, O. Nguyen, C.C.F. Blake, C.J. Terry, T.G. Feest, A.M. Zalin and J.J. Hsuan, Nature, 362, 553 (1993); https://doi.org/10.1038/362553a0.
- R. Swaminathan, V.K. Ravi, S. Kumar, M.V. Kumar and N. Chandra, Adv. Protein Chem. Struct. Biol., 84, 63 (2011); https://doi.org/10.1016/B978-0-12-386483-3.00003-3.
- R.F. Harrison, P.N. Hawkins, W.R. Roche, R.F. MacMahon, S.G. Hubscher and J.A. Buckels, Gut, 38, 151 (1996); https://doi.org/10.1136/gut.38.1.151.
- P. Jolles and J. Jolles, Mol. Cell. Biochem., 63, 165 (1984); https://doi.org/10.1007/BF00285225.
- R.H. Scannevin, Curr. Opin. Chem. Biol., 44, 66 (2018); https://doi.org/10.1016/j.cbpa.2018.05.018.
- L.K. Gavrin, R.A. Denny and E. Saiah, J. Med. Chem., 55, 10823 (2012); https://doi.org/10.1021/jm301182j.
- A.R. Hurshman, J.T. White, E.T. Powers and J.W. Kelly, Biochem., 43, 7365 (2004); https://doi.org/10.1021/bi049621l.
- G.J. Miroy, Z. Lai, H.A. Lashuel, S.A. Peterson, C. Strang and J.W. Kelly, Proc. Natl. Acad. Sci. USA, 93, 15051 (1996); https://doi.org/10.1073/pnas.93.26.15051.
- A. Wojtczak, V. Cody, J.R. Luft and W. Pangborn, Acta Crystallogr. D Biol. Crystallogr., 52, 758 (1996); https://doi.org/10.1107/S0907444996003046.
- V.J.N. Bykov, N. Issaeva, A. Shilov, M. Hultcrantz, E. Pugacheva, P. Chumakov, J. Bergman, K.G. Wiman and G. Selivanova, Nat. Med., 8, 282 (2002); https://doi.org/10.1038/nm0302-282.
- T.R. Reddy, R. Mutter, W. Heal, K. Guo, V.J. Gillet, S. Pratt and B. Chen, J. Med. Chem., 49, 607 (2006); https://doi.org/10.1021/jm050610f.
- Z. Gazova, A. Bellova, Z. Daxnerova, J. Imrich, J. Tomascikova, P. Kristian, J. Bagelova, D. Fedunova and M. Antalik, Eur. Biophys. J., 37, 1261 (2008); https://doi.org/10.1007/s00249-008-0313-0.
- A. Antosova, B. Chelli, E. Bystrenova, K. Siposova, F. Valle, J. Imrich, M. Vilkova, P. Kristian, F. Biscarini and Z. Gazova, Biochim. Biophys. Acta, 1810, 465 (2011); https://doi.org/10.1016/j.bbagen.2011.01.007.
- G. Rabbani and I. Choi, Int. J. Biol. Macromol., 109, 483 (2018); https://doi.org/10.1016/j.ijbiomac.2017.12.100.
- Z. Ignatova and L.M. Gierasch, Proc. Natl. Acad. Sci. USA, 103, 13357 (2006); https://doi.org/10.1073/pnas.0603772103.
- C. Soto, FEBS Lett., 498, 204 (2001); https://doi.org/10.1016/S0014-5793(01)02486-3.
- O.M. El-Agnaf, K.E. Paleologou, B. Greer, A.M. Abogrein, J.E. King, S.A. Salem, N.J. Fullwood, F.E. Benson, R. Hewitt, K.J. Ford, F.L. Martin, P. Harriott, M.R. Cookson and D. Allsop, FASEB J., 18, 1315 (2004); https://doi.org/10.1096/fj.03-1346fje.
- T.J. Gibson and R.M. Murphy, Protein Sci., 15, 1133 (2006); https://doi.org/10.1110/ps.051879606.
- C. Soto, R.J. Kascsak, G.P. Saborio, P. Aucouturier, T. Wisniewski, F. Prelli, R. Kascsak, E. Mendez, D.A. Harris, J. Ironside, F. Tagliavini, R.I. Carp and B. Frangione, Lancet, 355, 192 (2000); https://doi.org/10.1016/S0140-6736(99)11419-3.
- C. Soto, E.M. Sigurdsson, L. Morelli, R. Asok Kumar, E.M. Castaño and B. Frangione, Nat. Med., 4, 822 (1998); https://doi.org/10.1038/nm0798-822.
- D. Schenk, R. Barbour, W. Dunn, G. Gordon, H. Grajeda, T. Guido, K. Hu, J. Huang, K. Johnson-Wood, K. Khan, D. Kholodenko, M. Lee, Z. Liao, I. Lieberburg, R. Motter, L. Mutter, F. Soriano, G. Shopp, N. Vasquez, C. Vandevert, S. Walker, M. Wogulis, T. Yednock, D. Games and P. Seubert, Nature, 400, 173 (1999); https://doi.org/10.1038/22124.
- D. Morgan, D.M. Diamond, P.E. Gottschall, K.E. Ugen, C. Dickey, J. Hardy, K. Duff, P. Jantzen, G. DiCarlo, D. Wilcock, K. Connor, J. Hatcher, C. Hope, M. Gordon and G.W. Arendash, Nature, 408, 982 (2000); https://doi.org/10.1038/35050116.
- C. Janus, J. Pearson, J. McLaurin, P.M. Mathews, Y. Jiang, S.D. Schmidt, M.A. Chishti, P. Horne, D. Heslin, J. French, H.T. Mount, R.A. Nixon, M. Mercken, C. Bergeron, P.E. Fraser, P. St George-Hyslop and D. Westaway, Nature, 408, 979 (2000); https://doi.org/10.1038/35050110.
- Y. Gong, L. Chang, K.L. Viola, P.N. Lacor, M.P. Lambert, C.E. Finch, G.A. Krafft and W.L. Klein, Proc. Natl. Acad. Sci. USA, 100, 10417 (2003); https://doi.org/10.1073/pnas.1834302100.
- M.P. Lambert, K.L. Viola, B.A. Chromy, L. Chang, T.E. Morgan, J. Yu, D.L. Venton, G.A. Krafft, C.E. Finch and W.L. Klein, J. Neurochem., 79, 595 (2001); https://doi.org/10.1046/j.1471-4159.2001.00592.x.
- M. Lindhagen-Persson, K. Brannstrom, M. Vestling, M. Steinitz and A. Olofsson, PLoS One, 5, e13928 (2010); https://doi.org/10.1371/journal.pone.0013928.
- K. Yanamandra, M.A. Gruden, V. Casaite, R. Meskys, L. Forsgren and L.A. Morozova-Roche, PLoS One, 6, e18513 (2011); https://doi.org/10.1371/journal.pone.0018513.
- F. Neff, X. Wei, C. Nolker, M. Bacher, Y. Du and R. Dodel, Autoimmun. Rev., 7, 501 (2008); https://doi.org/10.1016/j.autrev.2008.04.010.
- R. Parveen, T.N. Shamsi and S. Fatima, Int. J. Biol. Macromol., 94, 386 (2017); https://doi.org/10.1016/j.ijbiomac.2016.10.024.
- L. Shang, J. Wang, L. Jiang and S. Dong, Langmuir, 23, 2714 (2007); https://doi.org/10.1021/la062064e.
- X. Wu and G. Narsimhan, Biochim. Biophys. Acta, 1784, 1694 (2008); https://doi.org/10.1016/j.bbapap.2008.06.008.
- H.H. Griffiths, I.J. Morten and N.M. Hooper, Expert Opin. Ther. Targets, 12, 693 (2008); https://doi.org/10.1517/14728222.12.6.693.
- D. Chopra, M. Gulati, V. Saluja, P. Pathak and P. Bansal, Recent Patents CNS Drug Discov., 3, 216 (2008); https://doi.org/10.2174/157488908786242461.
- R.C. Triulzi, Q. Dai, J. Zou, R.M. Leblanc, Q. Gu, J. Orbulescu and Q. Huo, Colloids Surf. B Biointerfaces, 63, 200 (2008); https://doi.org/10.1016/j.colsurfb.2007.12.006.
References
C.M. Dobson, Semin. Cell Dev. Biol., 15, 3 (2004); https://doi.org/10.1016/j.semcdb.2003.12.008.
A. Szilagyi, J. Kardos, S. Osvath, L. Barna and P. Zavodszky, eds. A. Lajth, and N. Banik, Protein Folding, In: Handbook of Neurochemistry and Molecular Neurobiology, Springer, vol. 7, pp. 303-344 (2007).
R.J. Ellis, eds.: B. Henderson, and A.G. Pockley, Chaperone Function: The Orthodox View, In: Molecular Chaperones and Cell Signaling, Cambridge University Press, pp. 3-21 (2005).
C.M. Dobson, Nature, 426, 884 (2003); https://doi.org/10.1038/nature02261.
M.L. Anson and A.E. Mirsky, J. Gen. Physiol., 9, 169 (1925); https://doi.org/10.1085/jgp.9.2.169.
C.B. Anfinsen, E. Haber, M. Sela and F.H. White, Proc. Natl. Acad. Sci. USA, 47, 1309 (1961); https://doi.org/10.1073/pnas.47.9.1309.
C. Levinthal, J. Chim. Phys., 65, 44 (1968); https://doi.org/10.1051/jcp/1968650044.
D.B. Wetlaufer, Proc. Natl. Acad. Sci. USA, 70, 697 (1973); https://doi.org/10.1073/pnas.70.3.697.
M. Karplus and D.L. Weaver, Nature, 260, 404 (1976); https://doi.org/10.1038/260404a0.
R.L. Baldwin, Trends Biochem. Sci., 14, 291 (1989); https://doi.org/10.1016/0968-0004(89)90067-4.
K.A. Dill, Biochemistry, 24, 1501 (1985); https://doi.org/10.1021/bi00327a032.
S.C. Harrison and R. Durbin, Proc. Natl. Acad. Sci. USA, 82, 4028 (1985); https://doi.org/10.1073/pnas.82.12.4028.
R.L. Baldwin, Nature, 369, 183 (1994); https://doi.org/10.1038/369183a0.
J.N. Onuchic, H. Nymeyer, A.E. García, J. Chahine and N.D. Socci, Adv. Protein Chem., 53, 87 (2000); https://doi.org/10.1016/S0065-3233(00)53003-4.
C.M. Dobson, A. Sali and M. Karplus, Angew. Chem. Int. Ed., 37, 868 (1998); https://doi.org/10.1002/(SICI)1521-3773(19980420)37:7<868::AIDANIE868>3.0.CO;2-H.
K.A. Dill and H.S. Chan, Nat. Struct. Biol., 4, 10 (1997); https://doi.org/10.1038/nsb0197-10.
A.R. Dinner, A. Sali, L.J. Smith, C.M. Dobson and M. Karplus, Trends Biochem. Sci., 25, 331 (2000); https://doi.org/10.1016/S0968-0004(00)01610-8.
P.G. Wolynes, J.N. Onuchic and D. Thirumalai, Science, 267, 1619 (1995); https://doi.org/10.1126/science.7886447.
K.P. Wong and C. Tanford, J. Biol. Chem., 248, 8518 (1973).
K. Kuwajima, K. Nitta, M. Yoneyama and S. Sugai, J. Mol. Biol., 106, 359 (1976); https://doi.org/10.1016/0022-2836(76)90091-7.
A.R. Molla, S.S. Maity, S. Ghosh and D.K. Mandal, Biochimie, 91, 857 (2009); https://doi.org/10.1016/j.biochi.2009.04.006.
P. Mandal, A.R. Molla and D.K. Mandal, J. Biochem., 154, 531 (2013); https://doi.org/10.1093/jb/mvt084.
M.M. Lyles and H.F. Gilbert, Biochem., 30, 619 (1991); https://doi.org/10.1021/bi00217a005.
F.X. Schmid, Annu. Rev. Biophys. Biomol. Struct., 22, 123 (1993); https://doi.org/10.1146/annurev.bb.22.060193.001011.
Y.E. Kim, M.S. Hipp, A. Bracher, M. Hayer-Hartl and F. Ulrich-Hartl, Annu. Rev. Biochem., 82, 323 (2013); https://doi.org/10.1146/annurev-biochem-060208-092442.
F.U. Hartl and M. Hayer-Hartl, Sci., 295, 1852 (2002); https://doi.org/10.1126/science.1068408.
M.P. Mayer, Mol. Cell, 39, 321 (2010); https://doi.org/10.1016/j.molcel.2010.07.012.
C. Hammond and A. Helenius, Curr. Opin. Cell Biol., 7, 523 (1995); https://doi.org/10.1016/0955-0674(95)80009-3.
R.J. Kaufman, D. Scheuner, M. Schröder, X. Shen, K. Lee, C.Y. Liu and S.M. Arnold, Nat. Rev. Mol. Cell Biol., 3, 411 (2002); https://doi.org/10.1038/nrm829.
U. Schubert, L.C. Antón, J. Gibbs, C.C. Norbury, J.W. Yewdell and J.R. Bennink, Nature, 404, 770 (2000); https://doi.org/10.1038/35008096.
T.N. Shamsi, T. Athar, R. Parveen and S. Fatima, Int. J. Biol. Macromol., 105, 993 (2017); https://doi.org/10.1016/j.ijbiomac.2017.07.116.
M.K. Siddiqi, P. Alam, S.K. Chaturvedi, Y.E. Shahein and R.H. Khan, Front. Biosci., 9, 1 (2017).
P. Alam, K. Siddiqi, S.K. Chturvedi and R.H. Khan, Int. J. Biol. Macromol., 103, 208 (2017); https://doi.org/10.1016/j.ijbiomac.2017.05.048.
I. Moreno-Gonzalez and C. Soto, Semin. Cell Dev. Biol., 22, 482 (2011); https://doi.org/10.1016/j.semcdb.2011.04.002.
B. Ciani, E.G. Hutchinson, R.B. Sessions and D.N. Woolfson, J. Biol. Chem., 277, 10150 (2002); https://doi.org/10.1074/jbc.M107663200.
F. Chiti, M. Stefani, N. Taddei, G. Ramponi and C.M. Dobson, Nature, 424, 805 (2003); https://doi.org/10.1038/nature01891.
T. Konno, Biochem., 40, 2148 (2001); https://doi.org/10.1021/bi002156h.
V. Kumar, N. Sami, T. Kashav, A. Islam, F. Ahmad and M.I. Hassan, Eur. J. Med. Chem., 124, 1105 (2016); https://doi.org/10.1016/j.ejmech.2016.07.054.
D.M. Walsh and D.J. Selkoe, J. Neurochem., 101, 1172 (2007); https://doi.org/10.1111/j.1471-4159.2006.04426.x.
B. Caughey and P.T. Lansbury Jr., Annu. Rev. Neurosci., 26, 267 (2003); https://doi.org/10.1146/annurev.neuro.26.010302.081142.
V. Fodera, A. Zaccone, M. Lattuada and A.M. Donald, Phys. Rev. Lett., 111, 108105 (2013); https://doi.org/10.1103/PhysRevLett.111.108105.
M.R.H. Krebs, K.R. Domike and A.M. Donald, Biochem. Soc. Trans., 37, 682 (2009); https://doi.org/10.1042/BST0370682.
M.I. Smith, V. Fodera, J.S. Sharp, C.J. Roberts and A.M. Donald, Colloids Surf. B Biointerfaces, 89, 216 (2012); https://doi.org/10.1016/j.colsurfb.2011.09.018.
V. Vetri and V. Foderà, FEBS Lett., 589(19PartA), 2448 (2015); https://doi.org/10.1016/j.febslet.2015.07.006.
M.G. Ulep, S.K. Saraon and S. McLea, J. Nurse Pract., 14, 129 (2018); https://doi.org/10.1016/j.nurpra.2017.10.014.
C.X. Gong and K. Iqbal, Curr. Med. Chem., 15, 2321 (2008); https://doi.org/10.2174/092986708785909111.
R.A. Liddle, Brain Res., 1693, 201 (2018); https://doi.org/10.1016/j.brainres.2018.01.010.
M. Goedert, Science, 349, 1255555 (2015); https://doi.org/10.1126/science.1255555.
J.A. Steiner, E. Angot and P. Brundin, Cell Death Differ., 18, 1425 (2011); https://doi.org/10.1038/cdd.2011.53.
R. Ghosh and S.J. Tabrizi, Handb. Clin. Neurol., 147, 255 (2018); https://doi.org/10.1016/B978-0-444-63233-3.00017-8.
T.H. Mok and S. Mead, Medicine, 45, 674 (2017); https://doi.org/10.1016/j.mpmed.2017.08.007.
J.W. Ironside, D.L. Ritchie and M.W. Head, Handb. Clin. Neurol., 145, 393 (2018); https://doi.org/10.1016/B978-0-12-802395-2.00028-6.
M.B. Pepys, P.N. Hawkins, D.R. Booth, D.M. Vigushin, G.A. Tennent, A.K. Soutar, N. Totty, O. Nguyen, C.C.F. Blake, C.J. Terry, T.G. Feest, A.M. Zalin and J.J. Hsuan, Nature, 362, 553 (1993); https://doi.org/10.1038/362553a0.
R. Swaminathan, V.K. Ravi, S. Kumar, M.V. Kumar and N. Chandra, Adv. Protein Chem. Struct. Biol., 84, 63 (2011); https://doi.org/10.1016/B978-0-12-386483-3.00003-3.
R.F. Harrison, P.N. Hawkins, W.R. Roche, R.F. MacMahon, S.G. Hubscher and J.A. Buckels, Gut, 38, 151 (1996); https://doi.org/10.1136/gut.38.1.151.
P. Jolles and J. Jolles, Mol. Cell. Biochem., 63, 165 (1984); https://doi.org/10.1007/BF00285225.
R.H. Scannevin, Curr. Opin. Chem. Biol., 44, 66 (2018); https://doi.org/10.1016/j.cbpa.2018.05.018.
L.K. Gavrin, R.A. Denny and E. Saiah, J. Med. Chem., 55, 10823 (2012); https://doi.org/10.1021/jm301182j.
A.R. Hurshman, J.T. White, E.T. Powers and J.W. Kelly, Biochem., 43, 7365 (2004); https://doi.org/10.1021/bi049621l.
G.J. Miroy, Z. Lai, H.A. Lashuel, S.A. Peterson, C. Strang and J.W. Kelly, Proc. Natl. Acad. Sci. USA, 93, 15051 (1996); https://doi.org/10.1073/pnas.93.26.15051.
A. Wojtczak, V. Cody, J.R. Luft and W. Pangborn, Acta Crystallogr. D Biol. Crystallogr., 52, 758 (1996); https://doi.org/10.1107/S0907444996003046.
V.J.N. Bykov, N. Issaeva, A. Shilov, M. Hultcrantz, E. Pugacheva, P. Chumakov, J. Bergman, K.G. Wiman and G. Selivanova, Nat. Med., 8, 282 (2002); https://doi.org/10.1038/nm0302-282.
T.R. Reddy, R. Mutter, W. Heal, K. Guo, V.J. Gillet, S. Pratt and B. Chen, J. Med. Chem., 49, 607 (2006); https://doi.org/10.1021/jm050610f.
Z. Gazova, A. Bellova, Z. Daxnerova, J. Imrich, J. Tomascikova, P. Kristian, J. Bagelova, D. Fedunova and M. Antalik, Eur. Biophys. J., 37, 1261 (2008); https://doi.org/10.1007/s00249-008-0313-0.
A. Antosova, B. Chelli, E. Bystrenova, K. Siposova, F. Valle, J. Imrich, M. Vilkova, P. Kristian, F. Biscarini and Z. Gazova, Biochim. Biophys. Acta, 1810, 465 (2011); https://doi.org/10.1016/j.bbagen.2011.01.007.
G. Rabbani and I. Choi, Int. J. Biol. Macromol., 109, 483 (2018); https://doi.org/10.1016/j.ijbiomac.2017.12.100.
Z. Ignatova and L.M. Gierasch, Proc. Natl. Acad. Sci. USA, 103, 13357 (2006); https://doi.org/10.1073/pnas.0603772103.
C. Soto, FEBS Lett., 498, 204 (2001); https://doi.org/10.1016/S0014-5793(01)02486-3.
O.M. El-Agnaf, K.E. Paleologou, B. Greer, A.M. Abogrein, J.E. King, S.A. Salem, N.J. Fullwood, F.E. Benson, R. Hewitt, K.J. Ford, F.L. Martin, P. Harriott, M.R. Cookson and D. Allsop, FASEB J., 18, 1315 (2004); https://doi.org/10.1096/fj.03-1346fje.
T.J. Gibson and R.M. Murphy, Protein Sci., 15, 1133 (2006); https://doi.org/10.1110/ps.051879606.
C. Soto, R.J. Kascsak, G.P. Saborio, P. Aucouturier, T. Wisniewski, F. Prelli, R. Kascsak, E. Mendez, D.A. Harris, J. Ironside, F. Tagliavini, R.I. Carp and B. Frangione, Lancet, 355, 192 (2000); https://doi.org/10.1016/S0140-6736(99)11419-3.
C. Soto, E.M. Sigurdsson, L. Morelli, R. Asok Kumar, E.M. Castaño and B. Frangione, Nat. Med., 4, 822 (1998); https://doi.org/10.1038/nm0798-822.
D. Schenk, R. Barbour, W. Dunn, G. Gordon, H. Grajeda, T. Guido, K. Hu, J. Huang, K. Johnson-Wood, K. Khan, D. Kholodenko, M. Lee, Z. Liao, I. Lieberburg, R. Motter, L. Mutter, F. Soriano, G. Shopp, N. Vasquez, C. Vandevert, S. Walker, M. Wogulis, T. Yednock, D. Games and P. Seubert, Nature, 400, 173 (1999); https://doi.org/10.1038/22124.
D. Morgan, D.M. Diamond, P.E. Gottschall, K.E. Ugen, C. Dickey, J. Hardy, K. Duff, P. Jantzen, G. DiCarlo, D. Wilcock, K. Connor, J. Hatcher, C. Hope, M. Gordon and G.W. Arendash, Nature, 408, 982 (2000); https://doi.org/10.1038/35050116.
C. Janus, J. Pearson, J. McLaurin, P.M. Mathews, Y. Jiang, S.D. Schmidt, M.A. Chishti, P. Horne, D. Heslin, J. French, H.T. Mount, R.A. Nixon, M. Mercken, C. Bergeron, P.E. Fraser, P. St George-Hyslop and D. Westaway, Nature, 408, 979 (2000); https://doi.org/10.1038/35050110.
Y. Gong, L. Chang, K.L. Viola, P.N. Lacor, M.P. Lambert, C.E. Finch, G.A. Krafft and W.L. Klein, Proc. Natl. Acad. Sci. USA, 100, 10417 (2003); https://doi.org/10.1073/pnas.1834302100.
M.P. Lambert, K.L. Viola, B.A. Chromy, L. Chang, T.E. Morgan, J. Yu, D.L. Venton, G.A. Krafft, C.E. Finch and W.L. Klein, J. Neurochem., 79, 595 (2001); https://doi.org/10.1046/j.1471-4159.2001.00592.x.
M. Lindhagen-Persson, K. Brannstrom, M. Vestling, M. Steinitz and A. Olofsson, PLoS One, 5, e13928 (2010); https://doi.org/10.1371/journal.pone.0013928.
K. Yanamandra, M.A. Gruden, V. Casaite, R. Meskys, L. Forsgren and L.A. Morozova-Roche, PLoS One, 6, e18513 (2011); https://doi.org/10.1371/journal.pone.0018513.
F. Neff, X. Wei, C. Nolker, M. Bacher, Y. Du and R. Dodel, Autoimmun. Rev., 7, 501 (2008); https://doi.org/10.1016/j.autrev.2008.04.010.
R. Parveen, T.N. Shamsi and S. Fatima, Int. J. Biol. Macromol., 94, 386 (2017); https://doi.org/10.1016/j.ijbiomac.2016.10.024.
L. Shang, J. Wang, L. Jiang and S. Dong, Langmuir, 23, 2714 (2007); https://doi.org/10.1021/la062064e.
X. Wu and G. Narsimhan, Biochim. Biophys. Acta, 1784, 1694 (2008); https://doi.org/10.1016/j.bbapap.2008.06.008.
H.H. Griffiths, I.J. Morten and N.M. Hooper, Expert Opin. Ther. Targets, 12, 693 (2008); https://doi.org/10.1517/14728222.12.6.693.
D. Chopra, M. Gulati, V. Saluja, P. Pathak and P. Bansal, Recent Patents CNS Drug Discov., 3, 216 (2008); https://doi.org/10.2174/157488908786242461.
R.C. Triulzi, Q. Dai, J. Zou, R.M. Leblanc, Q. Gu, J. Orbulescu and Q. Huo, Colloids Surf. B Biointerfaces, 63, 200 (2008); https://doi.org/10.1016/j.colsurfb.2007.12.006.