Copyright (c) 2023 B. YOGESWARI, S. DEIVANAYAKI, A. SAJITHA BANU, E. JAYANTHI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantum Chemical Studies on Structural, Spectral and Frontier Molecular Orbital Analysis of Indometacin in Aqueous Phases
Corresponding Author(s) : B. YOGESWARI
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
Density functional theory computations were done by using 6-31G(d) basis set in order to check out the solubility of indometacin in polar and non-polar solvents such as water, ethanol, acetone and diethyl ether, respectively. The quantum chemical parameters of indometacin in gaseous as well as in aqueous phases were calculated. The most stable structure (indometacin in water; IM-W) was found to be more stable with respect to the least stable complex (indometacin in diethyl ether; IM-D) by 3.14 Kcal/mol. The zero-point vibrational energy of indometacin in gas phase was found to be 197.731 Kcal/mol. The fundamental vibrational modes of indometacin were assignment and analyzed at B3LYP/6-31G(d) level of theory. The HOMO–LUMO analysis of indometacin showed that its HOMO is concentrated at its indole ring and LUMO is at its chlorophenyl group. The charge density distribution of indometacin was investigated through the molecular electrostatic potential map.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Dandic, K. Rajkovaca, M. Jozanovic, I. Pukleš, A. Széchenyi, M. Budetic and M. Samardzic, Rev. Anal. Chem., 41, 34 (2022);https://doi.org/10.1515/revac-2022-0032
- S. Nalamachu and R. Wortmann, Postgrad. Med., 126, 92 (2014);https://doi.org/10.3810/pgm.2014.07.2787
- M.D. Villar-Martínez, D. Moreno-Ajona MD, C. Chan and P.J. Goadsby, Headache, 61, 700 (2021);https://doi.org/10.1111/head.14111
- L.C. Sowers, L.S. Blanton, S.C. Weaver, R.J. Urban and C.P. Mouton, J. Transl. Sci., 6, 394 (2020).
- F. Shakeel, F.K. Alanazi, I.A. Alsarra and N. Haq, J. Mol. Liq., 188, 28 (2013);https://doi.org/10.1016/j.molliq.2013.09.013
- L. Xu, Y. Li, P. Jing, G. Xu, Q. Zhou, Y. Cai and X. Deng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 249, 119309 (2021);https://doi.org/10.1016/j.saa.2020.119309
- B. Rossi, P. Verrocchio, G. Viliani, G. Scarduelli, G. Guella and I. Mancini, J. Chem. Phys., 125, 044511 (2006);https://doi.org/10.1063/1.2217952
- A. Parkan, M. Mirzaei, N. Tavakoli and A. Homayouni, Main Group Chem., 21, 611 (2022);https://doi.org/10.3233/MGC-210157
- M.S. Alsalhi and K.L. Andrew Chan, Int. J. Pharm., 617, 121591 (2022);https://doi.org/10.1016/j.ijpharm.2022.121591
- M.S. Alsalhi and K.L.A. Chan, Int. J. Pharm., 617, 121591 (2022);https://doi.org/10.1016/j.ijpharm.2022.121591
- A.K. Jain, Eur. J. Pharm. Biopharm., 68, 701 (2008);https://doi.org/10.1016/j.ejpb.2007.06.013
- X. Qi, J. Zhang, W. Wang and D. Cao, Pharm. Dev. Technol., 18, 852 (2013);https://doi.org/10.3109/10837450.2011.595797
- E.I. Yackevich, A.B. Mirgorodskaya, L.Y. Zakharova and O.G. Sinyashin, Russ. Chem. Bull., 64, 2232 (2015);https://doi.org/10.1007/s11172-015-1143-8
- S. Kulkarni, S.P. Gupta, N. Upmanyu and S.D. Tonpay, J. Chem. Pharm. Res., 3, 280 (2011).
- P.K. Shende, R.S. Gaud, F. Naik and A. Deshmukhe, J. Anal. Pharm. Res., 3, 1 (2016);https://doi.org/10.15406/japlr.2016.03.00079
- N. Rodríguez-Laguna, L.I. Reyes-García, R. Moya-Hernández, A. Rojas- Hernández and R. Gómez-Balderas, J. Chem., 24, 9804162 (2016);https://doi.org/10.1155/2016/9804162
- Y. Wang, E. Bolton, S. Dracheva, K. Karapetyan, B.A. Shoemaker, T.O. Suzek, J. Wang, J. Xiao, J. Zhang and S.H. Bryant, Nucleic Acids Res., 38(S1), D255 (2010);https://doi.org/10.1093/nar/gkp965
- C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988);https://doi.org/10.1103/PhysRevB.37.785
- J.P. Perdew and Y. Wang, Phys. Rev. B Condens. Matter, 45, 13244 (1992);https://doi.org/10.1103/PhysRevB.45.13244
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, C. Adamo, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador,J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski,and D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 09, revision B.01 (2010).
- A. Frisch, A.B. Nielsen and A.J. Holder, Gauss View, Gaussian Inc. (2000).
- S. Miertus and J. Tomasi, Chem. Phys., 65, 239 (1982);https://doi.org/10.1016/0301-0104(82)85072-6
- S.P. Singh, C.R. Deb, S.U. Ahmed, Y.S. Chandra and B.K. Konwar, J. Bio. Nanosci., 8, 328 (2014).
- R. Karunathan, V. Kannappan and V. Sathyanarayanamoorthi, Elixir Computat. Chem., 71, 24793 (2014).
- P. Anbarasu, M. Arivazhagan and V. Balachandran, Indian J. Pure Appl. Phys., 50, 91 (2012).
- L. Dan, G.-M. Zhou, L.-T. Zhang and C.-H. Zhang, Spectrosc. Spectr. Anal., 38, 3112 (2018);https://doi.org/10.3964/j.issn.1000-0593(2018)10-3112-05
- M. Saranya, S. Ayyappan, R. Nithya, A. Gokila and R.K. Sangeetha, Dig. J. Nanomater. Biostruct., 12, 127 (2017).
- G. Ilango, M. Arivazhagan, J. Joseph Prince and V. Balachandran, Indian J. Pure Appl. Phys., 46, 698 (2008).
- A. Thirunavukkarasu, R. Karunathan, V. Sathyanarayanamoorthi and J. Mallika, Indian J. Pure Appl. Phys., 52, 653 (2014).
- N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley: New York (1994).
- V. Krishnakumar, S. Dheivamalar, R.J. Xavier and V. Balachandran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 147 (2006);https://doi.org/10.1016/j.saa.2005.09.039
- R.K. Sangeetha and S. Ayyappan, Dig. J. Nanomater. Biostruct., 15, 123 (2020);https://doi.org/10.15251/DJNB.2020.151.123
References
A. Dandic, K. Rajkovaca, M. Jozanovic, I. Pukleš, A. Széchenyi, M. Budetic and M. Samardzic, Rev. Anal. Chem., 41, 34 (2022);https://doi.org/10.1515/revac-2022-0032
S. Nalamachu and R. Wortmann, Postgrad. Med., 126, 92 (2014);https://doi.org/10.3810/pgm.2014.07.2787
M.D. Villar-Martínez, D. Moreno-Ajona MD, C. Chan and P.J. Goadsby, Headache, 61, 700 (2021);https://doi.org/10.1111/head.14111
L.C. Sowers, L.S. Blanton, S.C. Weaver, R.J. Urban and C.P. Mouton, J. Transl. Sci., 6, 394 (2020).
F. Shakeel, F.K. Alanazi, I.A. Alsarra and N. Haq, J. Mol. Liq., 188, 28 (2013);https://doi.org/10.1016/j.molliq.2013.09.013
L. Xu, Y. Li, P. Jing, G. Xu, Q. Zhou, Y. Cai and X. Deng, Spectrochim. Acta A Mol. Biomol. Spectrosc., 249, 119309 (2021);https://doi.org/10.1016/j.saa.2020.119309
B. Rossi, P. Verrocchio, G. Viliani, G. Scarduelli, G. Guella and I. Mancini, J. Chem. Phys., 125, 044511 (2006);https://doi.org/10.1063/1.2217952
A. Parkan, M. Mirzaei, N. Tavakoli and A. Homayouni, Main Group Chem., 21, 611 (2022);https://doi.org/10.3233/MGC-210157
M.S. Alsalhi and K.L. Andrew Chan, Int. J. Pharm., 617, 121591 (2022);https://doi.org/10.1016/j.ijpharm.2022.121591
M.S. Alsalhi and K.L.A. Chan, Int. J. Pharm., 617, 121591 (2022);https://doi.org/10.1016/j.ijpharm.2022.121591
A.K. Jain, Eur. J. Pharm. Biopharm., 68, 701 (2008);https://doi.org/10.1016/j.ejpb.2007.06.013
X. Qi, J. Zhang, W. Wang and D. Cao, Pharm. Dev. Technol., 18, 852 (2013);https://doi.org/10.3109/10837450.2011.595797
E.I. Yackevich, A.B. Mirgorodskaya, L.Y. Zakharova and O.G. Sinyashin, Russ. Chem. Bull., 64, 2232 (2015);https://doi.org/10.1007/s11172-015-1143-8
S. Kulkarni, S.P. Gupta, N. Upmanyu and S.D. Tonpay, J. Chem. Pharm. Res., 3, 280 (2011).
P.K. Shende, R.S. Gaud, F. Naik and A. Deshmukhe, J. Anal. Pharm. Res., 3, 1 (2016);https://doi.org/10.15406/japlr.2016.03.00079
N. Rodríguez-Laguna, L.I. Reyes-García, R. Moya-Hernández, A. Rojas- Hernández and R. Gómez-Balderas, J. Chem., 24, 9804162 (2016);https://doi.org/10.1155/2016/9804162
Y. Wang, E. Bolton, S. Dracheva, K. Karapetyan, B.A. Shoemaker, T.O. Suzek, J. Wang, J. Xiao, J. Zhang and S.H. Bryant, Nucleic Acids Res., 38(S1), D255 (2010);https://doi.org/10.1093/nar/gkp965
C. Lee, W. Yang and R.G. Parr, Phys. Rev. B Condens. Matter, 37, 785 (1988);https://doi.org/10.1103/PhysRevB.37.785
J.P. Perdew and Y. Wang, Phys. Rev. B Condens. Matter, 45, 13244 (1992);https://doi.org/10.1103/PhysRevB.45.13244
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, C. Adamo, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador,J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski,and D.J. Fox, Gaussian, Inc., Wallingford CT, Gaussian 09, revision B.01 (2010).
A. Frisch, A.B. Nielsen and A.J. Holder, Gauss View, Gaussian Inc. (2000).
S. Miertus and J. Tomasi, Chem. Phys., 65, 239 (1982);https://doi.org/10.1016/0301-0104(82)85072-6
S.P. Singh, C.R. Deb, S.U. Ahmed, Y.S. Chandra and B.K. Konwar, J. Bio. Nanosci., 8, 328 (2014).
R. Karunathan, V. Kannappan and V. Sathyanarayanamoorthi, Elixir Computat. Chem., 71, 24793 (2014).
P. Anbarasu, M. Arivazhagan and V. Balachandran, Indian J. Pure Appl. Phys., 50, 91 (2012).
L. Dan, G.-M. Zhou, L.-T. Zhang and C.-H. Zhang, Spectrosc. Spectr. Anal., 38, 3112 (2018);https://doi.org/10.3964/j.issn.1000-0593(2018)10-3112-05
M. Saranya, S. Ayyappan, R. Nithya, A. Gokila and R.K. Sangeetha, Dig. J. Nanomater. Biostruct., 12, 127 (2017).
G. Ilango, M. Arivazhagan, J. Joseph Prince and V. Balachandran, Indian J. Pure Appl. Phys., 46, 698 (2008).
A. Thirunavukkarasu, R. Karunathan, V. Sathyanarayanamoorthi and J. Mallika, Indian J. Pure Appl. Phys., 52, 653 (2014).
N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley: New York (1994).
V. Krishnakumar, S. Dheivamalar, R.J. Xavier and V. Balachandran, Spectrochim. Acta A Mol. Biomol. Spectrosc., 65, 147 (2006);https://doi.org/10.1016/j.saa.2005.09.039
R.K. Sangeetha and S. Ayyappan, Dig. J. Nanomater. Biostruct., 15, 123 (2020);https://doi.org/10.15251/DJNB.2020.151.123