Copyright (c) 2023 Aasim Hussain, Farha Jabeen, Mohd Warish, Indra Sulania, Anju Dhillon, Azher M. Siddiqui
This work is licensed under a Creative Commons Attribution 4.0 International License.
Ion Fluence-Dependent Structural and Electrical Characteristics of Electrochemically Synthesized PANI/ZnO Nano
Corresponding Author(s) : Azher M. Siddiqui
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
The electrochemical synthesis and ion irradiation effects of polyaniline/zinc oxide (PANI/ZnO) nanocomposite films on stainless steel substrates were investigated in this study. The structural, morphological and electrical properties of the films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and current-voltage (I-V) measurements. The results show that the films have a nanofiber network structure with an average diameter of 50-60 nm. The vibrational modes and structural properties of the films are influenced by ion fluence. The electrical conductivity and mobility of the films increase significantly at low fluence (1.0 × 1011 ions/cm2), reaching values of 1.14 × 10-2 S/cm and 3.56 × 10-5 cm2/V-s, respectively. However, at high fluence, electrical properties degrade due to the damage caused by the ion irradiation. This study demonstrates the potential of PANI/ZnO nanocomposite films for applications in the optoelectronic devices and energy storage devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Beygisangchin, S.A. Rashid, S. Shafie, A.R. Sadrolhosseini and H.N. Lim, Polymers, 13, 2003 (2021); https://doi.org/10.3390/polym13122003
- J. Heck, J. Goding, R. Portillo Lara and R. Green, Acta Biomater., 139, 259 (2022); https://doi.org/10.1016/j.actbio.2021.05.052
- M.R. Waikar, A.A. Shaikh and R.G. Sonkawade, Polym. Bull., 76, 4703 (2019); https://doi.org/10.1007/s00289-018-2634-1
- J. Toušek, J. Toušková, R. Chomutová, I. Køivka, M. Hajná and J. Stejskal, Synth. Met., 234, 161 (2017); https://doi.org/10.1016/j.synthmet.2017.10.015
- A. Kolodziejczak-Radzimska and T. Jesionowski, Materials, 7, 2833 (2014); https://doi.org/10.3390/ma7042833
- Y. Zhang, M.K. Ram, E.K. Stefanakos and D.Y. Goswami, J. Nanomater., 2012, 624520 (2012); https://doi.org/10.1155/2012/624520
- T. Alamgeer, M. Tahir, M.R. Sarker, S. Ali, Ibraheem, S. Hussian, S. Ali, M. Imran Khan, D.N. Khan, R. Ali and S. Mohd Said, Polymers, 15, 363 (2023); https://doi.org/10.3390/polym15020363
- A.M. Mohammed, S.S. Mohtar, F. Aziz, M. Aziz and A. Ul-Hamid, J. Environ. Chem. Eng., 9, 105065 (2021); https://doi.org/10.1016/j.jece.2021.105065
- K. Daideche, L. Hasniou and D. Lerari, Chem. Proc., 3, 110 (2021); https://doi.org/10.3390/ecsoc-24-08328
- S. Sivakumar, Y. Robinson and N.A. Mala, Appl. Surf. Sci. Adv., 12, 100344 (2022); https://doi.org/10.1016/j.apsadv.2022.100344
- A. Kumar and S. Banerjee, Int. J. Nanosci., 10, 161 (2011); https://doi.org/10.1142/S0219581X11007442
- A. Ibrayeva, A. Mutali, J. O’Connell, A.J. van Vuuren, E. Korneeva, A. Sohatsky, R. Rymzhanov, V. Skuratov, L. Alekseeva and I. Ivanov, Nuclear Materials and Energy, 30, 101106 (2022); https://doi.org/10.1016/j.nme.2021.101106
- M. Pandian, A. Krishnaprasanth, M. Palanisamy, G. Bangaru, R. Meena, C.L. Dong and A. Kandasami, Nanomaterials, 12, 3782 (2022); https://doi.org/10.3390/nano12213782
- K. Kaur, J. Phys.: Conf. Series, 2267, 012111 (2022); https://doi.org/10.1088/1742-6596/2267/1/012111
- G.B. Patel, N.L. Singh, F. Singh and P.K. Kulriya, Radiat. Phys. Chem., 181, 109288 (2021); https://doi.org/10.1016/j.radphyschem.2020.109288
- Z. Aftab, I. Sulania, A. Kandasami and L. Nair, ACS Omega, 7, 31869 (2022); https://doi.org/10.1021/acsomega.2c02653
- A. Hussain, Shumaila, A. Dhillon, I. Sulania and A.M. Siddiqui, Eds.: V. Singh, R. Sharma, M. Mohan, M.S. Mehata and A.K. Razdan, Comparative Study of Polypyrrole/Zinc Oxide Nanocomposites Synthesized by Different Methods, In: Proceedings of the International Conference on Atomic, Molecular, Optical & Nano Physics with Applications: CAMNP 2019, Singapore: Springer Singapore, pp. 601-607 (2022).
- M.L. da Silva-Neto, M.C. de Oliveira, C.T. Dominguez, R.E. Lins, N. Rakov, C.B. de Araújo, L.D.S. Menezes, H.P. de Oliveira and A.S. Gomes, Sci. Rep., 9, 11765 (2019); https://doi.org/10.1038/s41598-019-48056-w
- A. Batool, F. Kanwal, M. Imran, T. Jamil and S.A. Siddiqi, Synth. Met., 161, 2753 (2012); https://doi.org/10.1016/j.synthmet.2011.10.016
- L. Jiang and Z. Cui, Polym. Bull., 56, 529 (2006); https://doi.org/10.1007/s00289-005-0494-y
- S.S. Liu, L.J. Bian, F. Luan, M.T. Sun and X.X. Liu, Synth. Met., 162, 862 (2012); https://doi.org/10.1016/j.synthmet.2012.03.015
- D. Wang and F. Caruso, Adv. Mater., 13, 350 (2001); https://doi.org/10.1002/1521-4095(200103)13:5<350::AID-ADMA350>3.0.CO;2-X
- T. Fukuda, H. Takezoe, K. Ishikawa, A. Fukuda, H.S. Woo, S.K. Jeong, E.J. Oh and J.S. Suh, Synth. Met., 69, 175 (1995); https://doi.org/10.1016/0379-6779(94)02409-R
- J.P. Da Silva, S.C. De Torresi, D.L.A. De Faria and M.L.A. Temperini, Synth. Met., 101, 834 (1999); https://doi.org/10.1016/S0379-6779(98)01300-9
- G. Louarn, M. Lapkowski, S. Quillard, A. Pron, J.P. Buisson and S. Lefrant, J. Phys. Chem., 100, 6998 (1996); https://doi.org/10.1021/jp953387e
- Q. Hao, W. Lei, X. Xia, Z. Yan, X. Yang, L. Lu and X. Wang, Electrochim. Acta, 55, 632 (2010); https://doi.org/10.1016/j.electacta.2009.09.018
- J. Shen, M. Shi, B. Yan, H. Ma, N. Li and M. Ye, J. Mater. Chem., 21, 7795 (2011); https://doi.org/10.1039/c1jm10671f
- N.S. Singh, L. Kumar, A. Kumar, S. Vaisakh, S.D. Singh, K. Sisodiya, S. Srivastava, M. Kansal, S. Rawat, T.A. Singh, Tanya and Anita, Mater. Sci. Semicond. Process., 60, 29 (2017); https://doi.org/10.1016/j.mssp.2016.12.021
- J. Stejskal, I. Sapurina and M. Trchová, Prog. Polym. Sci., 35, 1420 (2010); https://doi.org/10.1016/j.progpolymsci.2010.07.006
- E.A. Duijnstee, V.M. Le Corre, M.B. Johnston, L.J.A. Koster, J. Lim and H.J. Snaith, Phys. Rev. Appl., 15, 014006 (2021); https://doi.org/10.1103/PhysRevApplied.15.014006
- M. Warish, G. Jamwal, Z. Aftab, N. Bhatt and A. Niazi, Preprint (2023); https://doi.org/10.48550/arXiv.2304.12701
- K. Daideche, L. Hasniou and D. Lerari, Chem. Proc., 3, 110 (2020); https://doi.org/10.3390/ecsoc-24-08328
- S. Li, D. Huang, B. Zhang, X. Xu, M. Wang, G. Yang and Y. Shen, Adv. Energy Mater., 4, 1301655 (2014); https://doi.org/10.1002/aenm.201301655
- P. Wan, X. Wen, C. Sun, B.K. Chandran, H. Zhang, X. Sun and X. Chen, Small, 11, 5409 (2015); https://doi.org/10.1002/smll.201501772
- L. Zhang, P. Wan, T. Xu, C. Kan and M. Jiang, Opt. Express, 29, 19202 (2021); https://doi.org/10.1364/OE.430132
- T. Yin, Y. Cheng, Y. Hou, L. Sun, Y. Ma, J. Su, Z. Zhang, N. Liu, L. Li and Y. Gao, Small, 18, 2204806 (2022); https://doi.org/10.1002/smll.202204806
- B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu and W. Chen, Nano Energy, 2, 1071 (2013); https://doi.org/10.1016/j.nanoen.2013.09.002
- Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang and W. Chen, Synth. Met., 156, 721 (2006); https://doi.org/10.1016/j.synthmet.2006.04.001
- E. Shanmugasundaram, C. Govindasamy, M.I. Khan, V. Ganesan, V. Narayanan, K. Vellaisamy, R. Rajamohan and S. Thambusamy, Carbon Letters, (2023); https://doi.org/10.1007/s42823-023-00578-0
- A.K. Sharma, A.K. Sharma and R. Sharma, Bull. Mater. Sci., 44, 121 (2021); https://doi.org/10.1007/s12034-021-02388-4
- P. Liu and L. Zhang, Crit. Rev. Solid State Mater. Sci., 34, 75 (2009); https://doi.org/10.1080/10408430902875968
References
M. Beygisangchin, S.A. Rashid, S. Shafie, A.R. Sadrolhosseini and H.N. Lim, Polymers, 13, 2003 (2021); https://doi.org/10.3390/polym13122003
J. Heck, J. Goding, R. Portillo Lara and R. Green, Acta Biomater., 139, 259 (2022); https://doi.org/10.1016/j.actbio.2021.05.052
M.R. Waikar, A.A. Shaikh and R.G. Sonkawade, Polym. Bull., 76, 4703 (2019); https://doi.org/10.1007/s00289-018-2634-1
J. Toušek, J. Toušková, R. Chomutová, I. Køivka, M. Hajná and J. Stejskal, Synth. Met., 234, 161 (2017); https://doi.org/10.1016/j.synthmet.2017.10.015
A. Kolodziejczak-Radzimska and T. Jesionowski, Materials, 7, 2833 (2014); https://doi.org/10.3390/ma7042833
Y. Zhang, M.K. Ram, E.K. Stefanakos and D.Y. Goswami, J. Nanomater., 2012, 624520 (2012); https://doi.org/10.1155/2012/624520
T. Alamgeer, M. Tahir, M.R. Sarker, S. Ali, Ibraheem, S. Hussian, S. Ali, M. Imran Khan, D.N. Khan, R. Ali and S. Mohd Said, Polymers, 15, 363 (2023); https://doi.org/10.3390/polym15020363
A.M. Mohammed, S.S. Mohtar, F. Aziz, M. Aziz and A. Ul-Hamid, J. Environ. Chem. Eng., 9, 105065 (2021); https://doi.org/10.1016/j.jece.2021.105065
K. Daideche, L. Hasniou and D. Lerari, Chem. Proc., 3, 110 (2021); https://doi.org/10.3390/ecsoc-24-08328
S. Sivakumar, Y. Robinson and N.A. Mala, Appl. Surf. Sci. Adv., 12, 100344 (2022); https://doi.org/10.1016/j.apsadv.2022.100344
A. Kumar and S. Banerjee, Int. J. Nanosci., 10, 161 (2011); https://doi.org/10.1142/S0219581X11007442
A. Ibrayeva, A. Mutali, J. O’Connell, A.J. van Vuuren, E. Korneeva, A. Sohatsky, R. Rymzhanov, V. Skuratov, L. Alekseeva and I. Ivanov, Nuclear Materials and Energy, 30, 101106 (2022); https://doi.org/10.1016/j.nme.2021.101106
M. Pandian, A. Krishnaprasanth, M. Palanisamy, G. Bangaru, R. Meena, C.L. Dong and A. Kandasami, Nanomaterials, 12, 3782 (2022); https://doi.org/10.3390/nano12213782
K. Kaur, J. Phys.: Conf. Series, 2267, 012111 (2022); https://doi.org/10.1088/1742-6596/2267/1/012111
G.B. Patel, N.L. Singh, F. Singh and P.K. Kulriya, Radiat. Phys. Chem., 181, 109288 (2021); https://doi.org/10.1016/j.radphyschem.2020.109288
Z. Aftab, I. Sulania, A. Kandasami and L. Nair, ACS Omega, 7, 31869 (2022); https://doi.org/10.1021/acsomega.2c02653
A. Hussain, Shumaila, A. Dhillon, I. Sulania and A.M. Siddiqui, Eds.: V. Singh, R. Sharma, M. Mohan, M.S. Mehata and A.K. Razdan, Comparative Study of Polypyrrole/Zinc Oxide Nanocomposites Synthesized by Different Methods, In: Proceedings of the International Conference on Atomic, Molecular, Optical & Nano Physics with Applications: CAMNP 2019, Singapore: Springer Singapore, pp. 601-607 (2022).
M.L. da Silva-Neto, M.C. de Oliveira, C.T. Dominguez, R.E. Lins, N. Rakov, C.B. de Araújo, L.D.S. Menezes, H.P. de Oliveira and A.S. Gomes, Sci. Rep., 9, 11765 (2019); https://doi.org/10.1038/s41598-019-48056-w
A. Batool, F. Kanwal, M. Imran, T. Jamil and S.A. Siddiqi, Synth. Met., 161, 2753 (2012); https://doi.org/10.1016/j.synthmet.2011.10.016
L. Jiang and Z. Cui, Polym. Bull., 56, 529 (2006); https://doi.org/10.1007/s00289-005-0494-y
S.S. Liu, L.J. Bian, F. Luan, M.T. Sun and X.X. Liu, Synth. Met., 162, 862 (2012); https://doi.org/10.1016/j.synthmet.2012.03.015
D. Wang and F. Caruso, Adv. Mater., 13, 350 (2001); https://doi.org/10.1002/1521-4095(200103)13:5<350::AID-ADMA350>3.0.CO;2-X
T. Fukuda, H. Takezoe, K. Ishikawa, A. Fukuda, H.S. Woo, S.K. Jeong, E.J. Oh and J.S. Suh, Synth. Met., 69, 175 (1995); https://doi.org/10.1016/0379-6779(94)02409-R
J.P. Da Silva, S.C. De Torresi, D.L.A. De Faria and M.L.A. Temperini, Synth. Met., 101, 834 (1999); https://doi.org/10.1016/S0379-6779(98)01300-9
G. Louarn, M. Lapkowski, S. Quillard, A. Pron, J.P. Buisson and S. Lefrant, J. Phys. Chem., 100, 6998 (1996); https://doi.org/10.1021/jp953387e
Q. Hao, W. Lei, X. Xia, Z. Yan, X. Yang, L. Lu and X. Wang, Electrochim. Acta, 55, 632 (2010); https://doi.org/10.1016/j.electacta.2009.09.018
J. Shen, M. Shi, B. Yan, H. Ma, N. Li and M. Ye, J. Mater. Chem., 21, 7795 (2011); https://doi.org/10.1039/c1jm10671f
N.S. Singh, L. Kumar, A. Kumar, S. Vaisakh, S.D. Singh, K. Sisodiya, S. Srivastava, M. Kansal, S. Rawat, T.A. Singh, Tanya and Anita, Mater. Sci. Semicond. Process., 60, 29 (2017); https://doi.org/10.1016/j.mssp.2016.12.021
J. Stejskal, I. Sapurina and M. Trchová, Prog. Polym. Sci., 35, 1420 (2010); https://doi.org/10.1016/j.progpolymsci.2010.07.006
E.A. Duijnstee, V.M. Le Corre, M.B. Johnston, L.J.A. Koster, J. Lim and H.J. Snaith, Phys. Rev. Appl., 15, 014006 (2021); https://doi.org/10.1103/PhysRevApplied.15.014006
M. Warish, G. Jamwal, Z. Aftab, N. Bhatt and A. Niazi, Preprint (2023); https://doi.org/10.48550/arXiv.2304.12701
K. Daideche, L. Hasniou and D. Lerari, Chem. Proc., 3, 110 (2020); https://doi.org/10.3390/ecsoc-24-08328
S. Li, D. Huang, B. Zhang, X. Xu, M. Wang, G. Yang and Y. Shen, Adv. Energy Mater., 4, 1301655 (2014); https://doi.org/10.1002/aenm.201301655
P. Wan, X. Wen, C. Sun, B.K. Chandran, H. Zhang, X. Sun and X. Chen, Small, 11, 5409 (2015); https://doi.org/10.1002/smll.201501772
L. Zhang, P. Wan, T. Xu, C. Kan and M. Jiang, Opt. Express, 29, 19202 (2021); https://doi.org/10.1364/OE.430132
T. Yin, Y. Cheng, Y. Hou, L. Sun, Y. Ma, J. Su, Z. Zhang, N. Liu, L. Li and Y. Gao, Small, 18, 2204806 (2022); https://doi.org/10.1002/smll.202204806
B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu and W. Chen, Nano Energy, 2, 1071 (2013); https://doi.org/10.1016/j.nanoen.2013.09.002
Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang and W. Chen, Synth. Met., 156, 721 (2006); https://doi.org/10.1016/j.synthmet.2006.04.001
E. Shanmugasundaram, C. Govindasamy, M.I. Khan, V. Ganesan, V. Narayanan, K. Vellaisamy, R. Rajamohan and S. Thambusamy, Carbon Letters, (2023); https://doi.org/10.1007/s42823-023-00578-0
A.K. Sharma, A.K. Sharma and R. Sharma, Bull. Mater. Sci., 44, 121 (2021); https://doi.org/10.1007/s12034-021-02388-4
P. Liu and L. Zhang, Crit. Rev. Solid State Mater. Sci., 34, 75 (2009); https://doi.org/10.1080/10408430902875968