Copyright (c) 2024 Keerti Rani, Jaiveer Singh, Arti Jangra, Jai Kumar, Ramesh Kumar
This work is licensed under a Creative Commons Attribution 4.0 International License.
An Efficient Adsorption of Safranin O Dye on Ascorbic Acid Coated Nanoparticles: Thermodynamics, Kinetics and Isotherm Studies
Corresponding Author(s) : Ramesh Kumar
Asian Journal of Chemistry,
Vol. 36 No. 2 (2024): Vol 36 Issue 2, 2024
Abstract
In present work, the chemical co-precipitation method was used to prepare the ascorbic acid coated magnetite nanoparticles (AA-MNPs) which were then applied for the elimination of hazardous dye safranin O from the contaminated water. With the help of XRD peaks and Debye-Scherrer equation, the average size of the ascorbic acid coated nanoparticles was found to be 18 nm. These surface coated nanoparticles were further characterized using FTIR, TGA, FESEM and VSM methods. Thus, formed surface functionalized magnetite nanoparticles (MNPs) were used for the removal of safranin O dye from the contaminated water, using batch adsorption technique by considering dosage of AA-MNPs, dye concentration, pH of solution and temperature. It was found that synthesized AA- MNPs showed the highest dye removal efficacy (more than 97%) when the dye concentration was taken 50 ppm. Different thermodynamic parameters were measured, including ∆Gº, ∆Hº and ∆Sº. Adsorption of safranin O dye on the surface of AA-MNPs was found to be exothermic and spontaneous, according to thermodynamic parameters. The Freundlich model matched the experimental equilibrium data better, implying a heterogeneous multilayer adsorption on nanoparticles surface, according to the isotherm analysis. Moreover, the investigation of kinetic data suggested a pseudo 2nd order rate for the safranin O dye adsorption process. In addition, a comparative investigation has been made for the efficacy of the removal of safranin O dye by ascorbic acid coated magnetic nanoparticles with the adsorbents that have previously been reported.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.E. Mahmoud, M.A. Khalifa, N.M. El-Mallah, H.M. Hassouba and G.M. Nabil, Int. J. Environ. Sci. Technol., 19, 141 (2022); https://doi.org/10.1007/s13762-021-03153-0
- M. Fayazi, D. Afzali, M.A. Taher, A. Mostafavi and V.K. Gupta, J. Mol. Liq., 212, 675 (2015); https://doi.org/10.1016/j.molliq.2015.09.045
- R.A. Mansour, A. El Shahawy, A. Attia and M.S. Beheary, Int. J. Chem. Eng., 2020, 1 (2020); https://doi.org/10.1155/2020/8053828
- M. Ghaedi, S. Haghdoust, S.N. Kokhdan, A. Mihandoost, R. Sahraie and A. Daneshfar, Spectrosc. Lett., 45, 500 (2012); https://doi.org/10.1080/00387010.2011.641058
- Z.M. Senol, U.D. Gül and S. Simsek, Biomass Convers. Biorefinery, 12, 4127 (2021); https://doi.org/10.1007/s13399-020-01216-9
- V.K. Gupta, R. Jain, A. Mittal, M. Mathur and S. Sikarwar, J. Colloid Interf. Sci., 309, 464 (2007); https://doi.org/10.1016/j.jcis.2006.12.010
- H. Tavakkoli and F. Hamedi, Res. Chem. Intermed., 42, 3005 (2016); https://doi.org/10.1007/s11164-015-2194-z
- A.M. Ghaedi, M. Ghaedi and P. Karami, Spectrochim. Acta A Mol. Biomol. Spectrosc., 138, 789 (2015); https://doi.org/10.1016/j.saa.2014.11.019
- P. Li, W. Xiao, P. Chevallier, D. Biswas, X. Ottenwaelder, M.A. Fortin and J.K. Oh, ChemistrySelect, 1, 4087 (2016); https://doi.org/10.1002/slct.201601035
- E.F.D. Januário, T.B. Vidovix, L.A. Araújo, L. Bergamasco Beltran, R. Bergamasco and A.M.S. Vieira, Environ. Technol., 43, 4315 (2022); https://doi.org/10.1080/09593330.2021.1946601
- M.M.A., Int. J. Environ. Monit. Anal., 2, 128 (2014); https://doi.org/10.11648/j.ijema.20140203.11
- J. Azimvand, K. Didehban and S.A. Mirshokraie, Adsorpt. Sci. Technol., 36, 1422 (2018); https://doi.org/10.1177/0263617418777836
- S. Kaur, S. Rani, R.K. Mahajan, M. Asif and V.K. Gupta, J. Ind. Eng. Chem., 22, 19 (2015); https://doi.org/10.1016/j.jiec.2014.06.019
- A. Abbaz, S. Arris, G. Viscusi, A. Ayat, H. Aissaoui and Y. Boumezough, Gels, 9, 916 (2023); https://doi.org/10.3390/gels9110916
- T.B. Vidovix, H.B. Quesada, R. Bergamasco, M.F. Vieira and A.M.S. Vieira, Environ. Technol., 43, 3047 (2022); https://doi.org/10.1080/09593330.2021.1914180
- J. Singh, A. Jangra, J. Kumar, K. Rani and R. Kumar, Rasayan J. Chem., 13, 105 (2020); https://doi.org/10.31788/RJC.2020.1315382
- Z. Hamami and V. Javanbakht, Ceram. Int., 47, 24170 (2021); https://doi.org/10.1016/j.ceramint.2021.05.128
- B. Priyadarshini, T. Patra and T.R. Sahoo, J. Magnes. Alloys, 9, 478 (2021); https://doi.org/10.1016/j.jma.2020.09.004
- M.H. Kahsay, Appl. Water Sci., 11, 45 (2021); https://doi.org/10.1007/s13201-021-01373-w
- R. Nodehi, H. Shayesteh and A. Rahbar-Kelishami, Int. J. Environ. Sci. Technol., 19, 2899 (2022); https://doi.org/10.1007/s13762-021-03399-8
- H. Tavakkoli and M. Yazdanbakhsh, Microporous Mesopor. Mater., 176, 86 (2013); https://doi.org/10.1016/j.micromeso.2013.03.043
- N.A. Merino, B.P. Barbero, P. Ruiz and L.E. Cadús, J. Catal., 240, 245 (2006); https://doi.org/10.1016/j.jcat.2006.03.020
- I.M. Lourenço, M.T. Pelegrino, J.C. Pieretti, G.P. Andrade, G. Cerchiaro and A.B. Seabra, J. Phys. Conf. Ser., 1323, 012015 (2019); https://doi.org/10.1088/1742-6596/1323/1/012015
- V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal and A.A. Nayak, J. Hazard. Mater., 186, 891 (2011); https://doi.org/10.1016/j.jhazmat.2010.11.091
- K.Y.A. Lin and W. Lee, Appl. Surf. Sci., 361, 114 (2016); https://doi.org/10.1016/j.apsusc.2015.11.108
- M. Ghaedi, A.G. Nasab, S. Khodadoust, M. Rajabi and S. Azizian, J. Ind. Eng. Chem., 20, 2317 (2014); https://doi.org/10.1016/j.jiec.2013.10.007
- F. Zhang, X. Tang, Y. Huang, A.A. Keller and J. Lan, Water Res., 150, 442 (2019); https://doi.org/10.1016/j.watres.2018.11.057
- J. Georgin, B. da Silva Marques, J. da Silveira Salla, E.L. Foletto, D. Allasia and G.L. Dotto, Environ. Sci. Pollut. Res. Int., 25, 6429 (2018); https://doi.org/10.1007/s11356-017-0975-1
- S. Pai, S.M. Kini, M.K. Narasimhan, A. Pugazhendhi and R. Selvaraj, Surf. Interfaces, 23, 100947 (2021); https://doi.org/10.1016/j.surfin.2021.100947
- M. Naghizade Asl, N.M. Mahmodi, P. Teymouri, B. Shahmoradi, R. Rezaee and A. Maleki, Desalination Water Treat., 57, 25278 (2016); https://doi.org/10.1080/19443994.2016.1151832
- M. Ghaedi, A. Ansari and R. Sahraei, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 687 (2013); https://doi.org/10.1016/j.saa.2013.04.091
- S. Agarwal, I. Tyagi, V.K. Gupta, M.H. Dehghani, J. Jaafari, D. Balarak and M. Asif, J. Mol. Liq., 224, 618 (2016); https://doi.org/10.1016/j.molliq.2016.10.032
- I. Ali, S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari, A. Feizizadeh, A. Hamzezadeh and M. Fazlzadeh, Environ. Sci. Pollut. Res. Int., 27, 36732 (2020); https://doi.org/10.1007/s11356-020-09310-1
- L. Mohammadi, E. Bazrafshan, M. Noroozifar, A. Ansari-Moghaddam, F. Barahuie and D. Balarak, J. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/2069519
References
M.E. Mahmoud, M.A. Khalifa, N.M. El-Mallah, H.M. Hassouba and G.M. Nabil, Int. J. Environ. Sci. Technol., 19, 141 (2022); https://doi.org/10.1007/s13762-021-03153-0
M. Fayazi, D. Afzali, M.A. Taher, A. Mostafavi and V.K. Gupta, J. Mol. Liq., 212, 675 (2015); https://doi.org/10.1016/j.molliq.2015.09.045
R.A. Mansour, A. El Shahawy, A. Attia and M.S. Beheary, Int. J. Chem. Eng., 2020, 1 (2020); https://doi.org/10.1155/2020/8053828
M. Ghaedi, S. Haghdoust, S.N. Kokhdan, A. Mihandoost, R. Sahraie and A. Daneshfar, Spectrosc. Lett., 45, 500 (2012); https://doi.org/10.1080/00387010.2011.641058
Z.M. Senol, U.D. Gül and S. Simsek, Biomass Convers. Biorefinery, 12, 4127 (2021); https://doi.org/10.1007/s13399-020-01216-9
V.K. Gupta, R. Jain, A. Mittal, M. Mathur and S. Sikarwar, J. Colloid Interf. Sci., 309, 464 (2007); https://doi.org/10.1016/j.jcis.2006.12.010
H. Tavakkoli and F. Hamedi, Res. Chem. Intermed., 42, 3005 (2016); https://doi.org/10.1007/s11164-015-2194-z
A.M. Ghaedi, M. Ghaedi and P. Karami, Spectrochim. Acta A Mol. Biomol. Spectrosc., 138, 789 (2015); https://doi.org/10.1016/j.saa.2014.11.019
P. Li, W. Xiao, P. Chevallier, D. Biswas, X. Ottenwaelder, M.A. Fortin and J.K. Oh, ChemistrySelect, 1, 4087 (2016); https://doi.org/10.1002/slct.201601035
E.F.D. Januário, T.B. Vidovix, L.A. Araújo, L. Bergamasco Beltran, R. Bergamasco and A.M.S. Vieira, Environ. Technol., 43, 4315 (2022); https://doi.org/10.1080/09593330.2021.1946601
M.M.A., Int. J. Environ. Monit. Anal., 2, 128 (2014); https://doi.org/10.11648/j.ijema.20140203.11
J. Azimvand, K. Didehban and S.A. Mirshokraie, Adsorpt. Sci. Technol., 36, 1422 (2018); https://doi.org/10.1177/0263617418777836
S. Kaur, S. Rani, R.K. Mahajan, M. Asif and V.K. Gupta, J. Ind. Eng. Chem., 22, 19 (2015); https://doi.org/10.1016/j.jiec.2014.06.019
A. Abbaz, S. Arris, G. Viscusi, A. Ayat, H. Aissaoui and Y. Boumezough, Gels, 9, 916 (2023); https://doi.org/10.3390/gels9110916
T.B. Vidovix, H.B. Quesada, R. Bergamasco, M.F. Vieira and A.M.S. Vieira, Environ. Technol., 43, 3047 (2022); https://doi.org/10.1080/09593330.2021.1914180
J. Singh, A. Jangra, J. Kumar, K. Rani and R. Kumar, Rasayan J. Chem., 13, 105 (2020); https://doi.org/10.31788/RJC.2020.1315382
Z. Hamami and V. Javanbakht, Ceram. Int., 47, 24170 (2021); https://doi.org/10.1016/j.ceramint.2021.05.128
B. Priyadarshini, T. Patra and T.R. Sahoo, J. Magnes. Alloys, 9, 478 (2021); https://doi.org/10.1016/j.jma.2020.09.004
M.H. Kahsay, Appl. Water Sci., 11, 45 (2021); https://doi.org/10.1007/s13201-021-01373-w
R. Nodehi, H. Shayesteh and A. Rahbar-Kelishami, Int. J. Environ. Sci. Technol., 19, 2899 (2022); https://doi.org/10.1007/s13762-021-03399-8
H. Tavakkoli and M. Yazdanbakhsh, Microporous Mesopor. Mater., 176, 86 (2013); https://doi.org/10.1016/j.micromeso.2013.03.043
N.A. Merino, B.P. Barbero, P. Ruiz and L.E. Cadús, J. Catal., 240, 245 (2006); https://doi.org/10.1016/j.jcat.2006.03.020
I.M. Lourenço, M.T. Pelegrino, J.C. Pieretti, G.P. Andrade, G. Cerchiaro and A.B. Seabra, J. Phys. Conf. Ser., 1323, 012015 (2019); https://doi.org/10.1088/1742-6596/1323/1/012015
V.K. Gupta, B. Gupta, A. Rastogi, S. Agarwal and A.A. Nayak, J. Hazard. Mater., 186, 891 (2011); https://doi.org/10.1016/j.jhazmat.2010.11.091
K.Y.A. Lin and W. Lee, Appl. Surf. Sci., 361, 114 (2016); https://doi.org/10.1016/j.apsusc.2015.11.108
M. Ghaedi, A.G. Nasab, S. Khodadoust, M. Rajabi and S. Azizian, J. Ind. Eng. Chem., 20, 2317 (2014); https://doi.org/10.1016/j.jiec.2013.10.007
F. Zhang, X. Tang, Y. Huang, A.A. Keller and J. Lan, Water Res., 150, 442 (2019); https://doi.org/10.1016/j.watres.2018.11.057
J. Georgin, B. da Silva Marques, J. da Silveira Salla, E.L. Foletto, D. Allasia and G.L. Dotto, Environ. Sci. Pollut. Res. Int., 25, 6429 (2018); https://doi.org/10.1007/s11356-017-0975-1
S. Pai, S.M. Kini, M.K. Narasimhan, A. Pugazhendhi and R. Selvaraj, Surf. Interfaces, 23, 100947 (2021); https://doi.org/10.1016/j.surfin.2021.100947
M. Naghizade Asl, N.M. Mahmodi, P. Teymouri, B. Shahmoradi, R. Rezaee and A. Maleki, Desalination Water Treat., 57, 25278 (2016); https://doi.org/10.1080/19443994.2016.1151832
M. Ghaedi, A. Ansari and R. Sahraei, Spectrochim. Acta A Mol. Biomol. Spectrosc., 114, 687 (2013); https://doi.org/10.1016/j.saa.2013.04.091
S. Agarwal, I. Tyagi, V.K. Gupta, M.H. Dehghani, J. Jaafari, D. Balarak and M. Asif, J. Mol. Liq., 224, 618 (2016); https://doi.org/10.1016/j.molliq.2016.10.032
I. Ali, S. Afshinb, Y. Poureshgh, A. Azari, Y. Rashtbari, A. Feizizadeh, A. Hamzezadeh and M. Fazlzadeh, Environ. Sci. Pollut. Res. Int., 27, 36732 (2020); https://doi.org/10.1007/s11356-020-09310-1
L. Mohammadi, E. Bazrafshan, M. Noroozifar, A. Ansari-Moghaddam, F. Barahuie and D. Balarak, J. Chem., 2017, 1 (2017); https://doi.org/10.1155/2017/2069519