Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study of Protonation Reaction of Anion Radicals of Some Dinitroaromatics in N,N-Dimethylformamide Using Cyclic Voltammetry
Corresponding Author(s) : Ghazala Yasmeen
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
In the present work, cyclic voltammetric method has been used to investigate the protonation of anion radicals of 1,2-, 1,3- and 1,4-dinitrobenzenes in N,N-dimethylformamide in the temperature range 5, 15, 25 and 35 °C. Glassy carbon electrode and hanging mercury drop electrode are used as working electrodes. Benzoic acid and salicylic acid are used as protonating agents. Homogeneous rate constant is calculated by using Nicholson and Shain equation. The position of nucleophilic attack in dinitrobenzenes has been investigated by calculation of charge densities using modified neglect of diatomic overlap (MNDO) and self consistent field-unrestricted Hartree Fock (SCF-UHF) molecular orbital methods. The heterogeneous rate constant ks,h for the first reduction process in dinitrobenzenes is determined by digital simulation of the cyclic voltammograms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Hanif, G. Yasmeen, R. Parveen and M. Amir, J. Chem. Soc. Pak., 36, 422 (2014).
- N. Arshad, N.K. Janjua, S. Ahmed, A.Y. Khan and L.H. Skibsted, Electrochim. Acta, 54, 6184 (2009); doi:10.1016/j.electacta.2009.05.087.
- J. Carbajo, S. Bollo, L.J. Núñez-Vergara, P. Navarrete and J.A. Squella, J. Electroanal. Chem., 494, 69 (2000); doi:10.1016/S0022-0728(00)00343-0.
- M. Kayanuma, H. Hosoi, A. Furuya, Y. Masuda and K. Takano, Chem. Phys. Lett., 494, 139 (2010); doi:10.1016/j.cplett.2010.05.082.
- N.A. Macías-Ruvalcaba, J.P. Telo and D.H. Evans, J. Electroanal. Chem., 600, 294 (2007); doi:10.1016/j.jelechem.2006.10.003.
- A.S. Mendkovich, M.A. Syroeshkin, L.V. Mikhalchenko, M.N. Mikhailov, A. Rusakov and V.P. Gultyai, Int. J. Electrochem., Article ID 346043 (2011); doi:10.4061/2011/346043.
- X. Lu, D. Shan, J. Yang, B. Huang and X. Zhou, Talanta, 115, 457 (2013); doi:10.1016/j.talanta.2013.06.002.
- C. Kraiya, P. Singh, Z.V. Todres and D.H. Evans, J. Electroanal. Chem., 563, 171 (2004); doi:10.1016/j.jelechem.2003.09.009.
- J.A. Squella, M. Huerta, S. Bollo, H. Pessoa and L.J. Núñez-Vergara, J. Electroanal. Chem., 420, 63 (1997); doi:10.1016/S0022-0728(96)04819-X.
- A. Chakraborty, S. Ahamed, S. Pal and S.K. Saha, ISRN Electrochem., Article ID 959128 (2013); doi:10.1155/2013/959128.
- F. Hanif, G. Yasmeen, R. Parveen and M. Amir, Asian J. Chem., 26, 5063 (2014); doi:10.14233/ajchem.2014.16319.
- R.S. Nicholson and I. Shain, Anal. Chem., 36, 706 (1964); doi:10.1021/ac60210a007.
- M. Mohammad, A.Y. Khan, M.S. Subhani, W. Begum, N. Ashraf, R. Qureshi and R. Iqbal, Res. Chemical Intermediates, 16, 29 (1991); doi:10.1163/156856791X00165.
- N.E. Miller, M.C. Wander and R.J. Cave, J. Phys. Chem., 103, 1084 (1999); doi:10.1021/jp983171n.
- D. Britz, Digital Simulation in Electrochemistry, Wiley Interscience, New York (1981).
- S.W. Feldberg and A.J. Bard, Electroanalytical Chemistry, Marcel Dekker, New York, p. 199 (1969).
- D. T. Sawyer, Experimental Electrochemistry for Chemists, John Wiley & Sons, p. 170 (1974).
- T.T.T. Li and M.J. Weaver, J. Am. Chem. Soc., 106, 6107 (1984); doi:10.1021/ja00332a073.
- F. Booth, J. Chem. Phys., 19, 391 (1951); doi:10.1063/1.1748233.
- J.M. Hale, Reactions of Molecules at electrodes, Wiley Interscience, New York (1970).
References
F. Hanif, G. Yasmeen, R. Parveen and M. Amir, J. Chem. Soc. Pak., 36, 422 (2014).
N. Arshad, N.K. Janjua, S. Ahmed, A.Y. Khan and L.H. Skibsted, Electrochim. Acta, 54, 6184 (2009); doi:10.1016/j.electacta.2009.05.087.
J. Carbajo, S. Bollo, L.J. Núñez-Vergara, P. Navarrete and J.A. Squella, J. Electroanal. Chem., 494, 69 (2000); doi:10.1016/S0022-0728(00)00343-0.
M. Kayanuma, H. Hosoi, A. Furuya, Y. Masuda and K. Takano, Chem. Phys. Lett., 494, 139 (2010); doi:10.1016/j.cplett.2010.05.082.
N.A. Macías-Ruvalcaba, J.P. Telo and D.H. Evans, J. Electroanal. Chem., 600, 294 (2007); doi:10.1016/j.jelechem.2006.10.003.
A.S. Mendkovich, M.A. Syroeshkin, L.V. Mikhalchenko, M.N. Mikhailov, A. Rusakov and V.P. Gultyai, Int. J. Electrochem., Article ID 346043 (2011); doi:10.4061/2011/346043.
X. Lu, D. Shan, J. Yang, B. Huang and X. Zhou, Talanta, 115, 457 (2013); doi:10.1016/j.talanta.2013.06.002.
C. Kraiya, P. Singh, Z.V. Todres and D.H. Evans, J. Electroanal. Chem., 563, 171 (2004); doi:10.1016/j.jelechem.2003.09.009.
J.A. Squella, M. Huerta, S. Bollo, H. Pessoa and L.J. Núñez-Vergara, J. Electroanal. Chem., 420, 63 (1997); doi:10.1016/S0022-0728(96)04819-X.
A. Chakraborty, S. Ahamed, S. Pal and S.K. Saha, ISRN Electrochem., Article ID 959128 (2013); doi:10.1155/2013/959128.
F. Hanif, G. Yasmeen, R. Parveen and M. Amir, Asian J. Chem., 26, 5063 (2014); doi:10.14233/ajchem.2014.16319.
R.S. Nicholson and I. Shain, Anal. Chem., 36, 706 (1964); doi:10.1021/ac60210a007.
M. Mohammad, A.Y. Khan, M.S. Subhani, W. Begum, N. Ashraf, R. Qureshi and R. Iqbal, Res. Chemical Intermediates, 16, 29 (1991); doi:10.1163/156856791X00165.
N.E. Miller, M.C. Wander and R.J. Cave, J. Phys. Chem., 103, 1084 (1999); doi:10.1021/jp983171n.
D. Britz, Digital Simulation in Electrochemistry, Wiley Interscience, New York (1981).
S.W. Feldberg and A.J. Bard, Electroanalytical Chemistry, Marcel Dekker, New York, p. 199 (1969).
D. T. Sawyer, Experimental Electrochemistry for Chemists, John Wiley & Sons, p. 170 (1974).
T.T.T. Li and M.J. Weaver, J. Am. Chem. Soc., 106, 6107 (1984); doi:10.1021/ja00332a073.
F. Booth, J. Chem. Phys., 19, 391 (1951); doi:10.1063/1.1748233.
J.M. Hale, Reactions of Molecules at electrodes, Wiley Interscience, New York (1970).