Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Magnetic Field on Rate of Production of Nickel Powder from Nickel Solution by Cementation of Zinc
Corresponding Author(s) : A.M. Ahmed
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
The effect of magnetic field on the rate of cementation of nickel from nickel sulphate on zinc was studied. Variables studied were nickel sulphate concentration and magnetic field intensity. It was found that the rate of nickel cementation increases significantly with increasing the intensity of magnetic field and percentage of increase in the rate of cementation ranges from 16.6 to 122 %. Results were explained on the basis that the application of magnetic field produces magneto hydrodynamic flow which enhances the rate of cementation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.A. Mubarak, A.H. El-Shazly and A.H. Konsowa, Desalination, 167, 127 (2004); doi:10.1016/j.desal.2004.06.120.
- T. Agelidis, K. Fytianos and G. Vasilikiotis, Chemosphere, 14, 1001 (1985); doi:10.1016/0045-6535(85)90021-9.
- P.H. Strickland and F. Lawson, in eds: D.J. Evans and R.S. Shoemaker, The Measurement and Interpretation of Cementation Rate Data, In: Proceeding of the International Symposium of Hydrometallurgy, AIME, New York, p. 293 (1973).
- L. Makhloufi, B. Saidani and H. Hammache, Water Res., 34, 2517 (2000); doi:10.1016/S0043-1354(99)00405-4.
- A.K. Biswas and W.G. Davenport, Extractive Metallurgy of Copper, Pergamon Press, Oxford (1980).
- J.P. Gould, M.Y. Masingale and M. Miller, J. Water Pollut. Control Fed., 3, 280 (1984).
- K.J. Hedrickson, M.M. Benjamin, J.F. Ferguson and L. Goebel, J. Water Pollut. Control Fed., 5, 468 (1984).
- D.J. MacKinnon, T.R. Ingraham and R. Kerby, Can. Metall. Quart., 10, 165 (1971); doi:10.1179/cmq.1971.10.3.165.
- G.P. Power and I.M. Richie, Metal Displacement Reactions in Modern Aspects of Electrochemistry, Plenum Press, N.Y., vol. 11 (1975).
- G. Rossi, Biohydrometallurgy, McGraw Hill, Hamburg, Germany (1990).
- A.K. Biswas and W.G. Davenport, Extractive Metallurgy of Copper, Pergamon Press, N.Y. (1979).
- P.H. Srickland and F. Lawson, Proc. Aust. Inst. Min. Met., 236, 25 (1970).
- D.J. Mackinnon and T.R. Ingraham, Can. Metall. Quart., 9, 443 (1970); doi:10.1179/cmq.1970.9.3.443.
- A.K. Biswas and J.G. Reid, Proc. Aust. Inst. Min. Met., 242, 37 (1972).
- S.A. Nosier, Chem. Biochem. Eng. Q., 17, 219 (2003).
- S.A. Noseir, Alexandria Eng. J., 35, 39 (1996).
- Y.A. El-Taweel, Z. Met. kd., 79, 544 (1988).
- R.D. Agarwal, J. Mines, Metals Fuels, 36, 138 (1988).
- A.H. Konsowa, Desalination, 254, 29 (2010); doi:10.1016/j.desal.2009.12.018.
- M.H. Slapic, E.L. Thackston, Water Pollut. Cent. Fed. J., 3, 238 (1987).
- B.M. Khudenko, Environ Eng. J., 113, 681 (1987); doi:10.1061/(ASCE)0733-9372(1987)113:4(681).
- F. Farahmand, D. Moradkhani, M.S. Safarzadeh and F. Rashchi, Hydrometall. J., 98, 81 (2009); doi:10.1016/j.hydromet.2009.04.001.
- Vogel's Text Book of Quantitative Inorganic Analysis, Longman Group Ltd., edn 4 (1978).
- E.J. Kelly, J. Electrochem. Soc., 124, 987 (1977); doi:10.1149/1.2133514.
- E.Z. Gak, ElektroKhumia, 3, 89 (1967).
- N. Ibl, Adv. Electrochem. Electrochem. Eng., 2, 49 (1962).
- T.Z. Fahidy, J. Appl. Electrochem., 13, 553 (1983); doi:10.1007/BF00617811.
- F.C. Frary, J. Am. Chem. Soc., 29, 1592 (1907); doi:10.1021/ja01965a007.
- V. Levich, Physicochemical Hydrodynamics, Englewood Cliffs, N.J. (1962).
- C.A. Cousins, J. Dash and C. Gorg, J. Appl. Phys., 55, 2606 (1984); doi:10.1063/1.333250.
- M.A. Ghabashy, G.H. Sedahmed and I.A.S. Mansour, Corros. J., 17, 36 (1982); doi:10.1179/000705982798274543.
- O. Wassef and T.Z. Fahidy, Electrochim. Acta, 21, 727 (1976); doi:10.1016/0013-4686(76)85002-5.
- S. Mohanta and T.Z. Fahidy, Can. J. Chem. Eng., 50, 248 (1972); doi:10.1002/cjce.5450500219.
- A. Terlain and T. Dufrenoy, J. Nucl. Mater., 212-215, 1504 (1994); doi:10.1016/0022-3115(94)91079-0.
References
A.A. Mubarak, A.H. El-Shazly and A.H. Konsowa, Desalination, 167, 127 (2004); doi:10.1016/j.desal.2004.06.120.
T. Agelidis, K. Fytianos and G. Vasilikiotis, Chemosphere, 14, 1001 (1985); doi:10.1016/0045-6535(85)90021-9.
P.H. Strickland and F. Lawson, in eds: D.J. Evans and R.S. Shoemaker, The Measurement and Interpretation of Cementation Rate Data, In: Proceeding of the International Symposium of Hydrometallurgy, AIME, New York, p. 293 (1973).
L. Makhloufi, B. Saidani and H. Hammache, Water Res., 34, 2517 (2000); doi:10.1016/S0043-1354(99)00405-4.
A.K. Biswas and W.G. Davenport, Extractive Metallurgy of Copper, Pergamon Press, Oxford (1980).
J.P. Gould, M.Y. Masingale and M. Miller, J. Water Pollut. Control Fed., 3, 280 (1984).
K.J. Hedrickson, M.M. Benjamin, J.F. Ferguson and L. Goebel, J. Water Pollut. Control Fed., 5, 468 (1984).
D.J. MacKinnon, T.R. Ingraham and R. Kerby, Can. Metall. Quart., 10, 165 (1971); doi:10.1179/cmq.1971.10.3.165.
G.P. Power and I.M. Richie, Metal Displacement Reactions in Modern Aspects of Electrochemistry, Plenum Press, N.Y., vol. 11 (1975).
G. Rossi, Biohydrometallurgy, McGraw Hill, Hamburg, Germany (1990).
A.K. Biswas and W.G. Davenport, Extractive Metallurgy of Copper, Pergamon Press, N.Y. (1979).
P.H. Srickland and F. Lawson, Proc. Aust. Inst. Min. Met., 236, 25 (1970).
D.J. Mackinnon and T.R. Ingraham, Can. Metall. Quart., 9, 443 (1970); doi:10.1179/cmq.1970.9.3.443.
A.K. Biswas and J.G. Reid, Proc. Aust. Inst. Min. Met., 242, 37 (1972).
S.A. Nosier, Chem. Biochem. Eng. Q., 17, 219 (2003).
S.A. Noseir, Alexandria Eng. J., 35, 39 (1996).
Y.A. El-Taweel, Z. Met. kd., 79, 544 (1988).
R.D. Agarwal, J. Mines, Metals Fuels, 36, 138 (1988).
A.H. Konsowa, Desalination, 254, 29 (2010); doi:10.1016/j.desal.2009.12.018.
M.H. Slapic, E.L. Thackston, Water Pollut. Cent. Fed. J., 3, 238 (1987).
B.M. Khudenko, Environ Eng. J., 113, 681 (1987); doi:10.1061/(ASCE)0733-9372(1987)113:4(681).
F. Farahmand, D. Moradkhani, M.S. Safarzadeh and F. Rashchi, Hydrometall. J., 98, 81 (2009); doi:10.1016/j.hydromet.2009.04.001.
Vogel's Text Book of Quantitative Inorganic Analysis, Longman Group Ltd., edn 4 (1978).
E.J. Kelly, J. Electrochem. Soc., 124, 987 (1977); doi:10.1149/1.2133514.
E.Z. Gak, ElektroKhumia, 3, 89 (1967).
N. Ibl, Adv. Electrochem. Electrochem. Eng., 2, 49 (1962).
T.Z. Fahidy, J. Appl. Electrochem., 13, 553 (1983); doi:10.1007/BF00617811.
F.C. Frary, J. Am. Chem. Soc., 29, 1592 (1907); doi:10.1021/ja01965a007.
V. Levich, Physicochemical Hydrodynamics, Englewood Cliffs, N.J. (1962).
C.A. Cousins, J. Dash and C. Gorg, J. Appl. Phys., 55, 2606 (1984); doi:10.1063/1.333250.
M.A. Ghabashy, G.H. Sedahmed and I.A.S. Mansour, Corros. J., 17, 36 (1982); doi:10.1179/000705982798274543.
O. Wassef and T.Z. Fahidy, Electrochim. Acta, 21, 727 (1976); doi:10.1016/0013-4686(76)85002-5.
S. Mohanta and T.Z. Fahidy, Can. J. Chem. Eng., 50, 248 (1972); doi:10.1002/cjce.5450500219.
A. Terlain and T. Dufrenoy, J. Nucl. Mater., 212-215, 1504 (1994); doi:10.1016/0022-3115(94)91079-0.