Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Corrosion Characteristics of Hydrotalcite and Mg(OH)2 Surfaces of AZ31 Alloy Accomplished via Hydrothermal Surface Modification
Corresponding Author(s) : A. Cyril
Asian Journal of Chemistry,
Vol. 31 No. 7 (2019): Vol 31 Issue 7
Abstract
In this work, the surface of AZ31-Mg alloy is modified by hydrothermal treatment in high alkali solutions to attain high corrosion resistance. A class of magnesium hydroxide family with a layer structured compound hydrotalcite [Mg6Al2CO3(OH)16·4H2O] rhombohedral phase has been formed along with hexagonal Mg(OH)2 phases on AZ31 alloy surface. The hydrotalcite and hexagonal Mg(OH)2 phases were confirmed by X-ray diffraction analysis. The modified surfaces of AZ31 alloy are examined by field emission scanning electron microscope and location specific elemental compositions are obtained by EDS analysis. The hydrotalcite and Mg(OH)2 corrosion behavior was analyzed in 3.5 % NaCl electrolyte. For comparison purpose, only hexagonal Mg(OH)2 surfaces were also prepared by hydrothermal treatment and compared the corrosion rates with the hydrotalcite surfaces. The linear polarization and electrochemical impedance spectroscopy results revealed that the hydrotalcite surfaces demonstrated more noble or positive shift on open circuit potential, corrosion current density and resistance than those of only hexagonal Mg(OH)2 and bare AZ31 alloy. The formation of layered double hydroxide of magnesium with carbonates on AZ31 alloy led the more protection and this work paves newer directions on hydrothermal surface modification of Mg alloys.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.L. Mordike and T. Ebert, Mater. Sci. Eng. A, 302, 37 (2001); https://doi.org/10.1016/S0921-5093(00)01351-4.
- S. Thomas, N.V. Medhekar, G.S. Frankel and N. Birbilis, Curr. Opin. Solid State Mater. Sci., 19, 85 (2015); https://doi.org/10.1016/j.cossms.2014.09.005
- R. Wu, Y. Yan, G. Wang, L. E. Murr, W. Han, Z. Zhang and M. Zhang, Int. Mater. Rev., 60, 65 (2015); https://doi.org/10.1179/1743280414Y.0000000044.
- L. Hou, T. Wang, R. Wu, J. Zhang, M. Zhang, A. Dong, B. Sun, S. Betsofen and B. Krit, J. Mater. Sci. Technol., 34, 317 (2018); https://doi.org/10.1016/j.jmst.2017.02.005.
- M. Esmaily, D.B. Blücher, R.W. Lindstrom, J.E. Svensson and L.G. Johansson, J. Electrochem. Soc., 162, C260 (2015); https://doi.org/10.1149/2.0801506jes.
- M. Shahabi-Navid, M. Esmaily, J.E. Svensson, M. Halvarsson, L. Nyborg, Y. Cao and L.G. Johansson, J. Electrochem. Soc., 161, C277 (2014); https://doi.org/10.1149/2.088405jes.
- Z. Pu, S. Yang, G.-L. Song, O.W. Dillon Jr., D.A. Puleo and I.S. Jawahir, Scr. Mater., 65, 520 (2011); https://doi.org/10.1016/j.scriptamat.2011.06.013.
- M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith and G.A. Botton, Corros. Sci., 77, 151 (2013); https://doi.org/10.1016/j.corsci.2013.07.038.
- R.M. Asmussen, P. Jakupi, M. Danaie, G.A. Botton and D.W. Shoesmith, Corros. Sci., 75, 114 (2013); https://doi.org/10.1016/j.corsci.2013.05.022.
- H.-Y. Ha, H.J. Kim, S-M. Baek, B. Kim, S-D. Sohn, H.-J. Shin, H.Y. Jeong, S.H. Park, C.D. Yim, B.S. You, J.G. Lee and S.S. Park, Scr. Mater., 109, 38 (2015); https://doi.org/10.1016/j.scriptamat.2015.07.013.
- R.K. Singh Raman, N. Birbilis and J. Efthimiadis, Corros. Eng. Sci. Technol., 39, 346 (2004); https://doi.org/10.1179/174327804X13208.
- M. Esmaily, M. Shahabi-Navid, J.E. Svensson, M. Halvarsson, L. Nyborg, Y. Cao and L.G. Johansson, Corros. Sci., 90, 420 (2015); https://doi.org/10.1016/j.corsci.2014.10.040.
- J. Liu, Y. Song, J. Chen, P. Chen, D. Shan and E.H. Han, Electrochim. Acta, 189, 190 (2016); https://doi.org/10.1016/j.electacta.2015.12.075.
- H. Ardelean, I. Frateur, S. Zanna, A. Atrens and P. Marcus, Corros. Sci., 51, 3030 (2009); https://doi.org/10.1016/j.corsci.2009.08.030.
- L. Chai, X. Yu, Z. Yang, Y. Wang and M. Okido, Corros. Sci., 50, 3274 (2008); https://doi.org/10.1016/j.corsci.2008.08.038.
- F. Pan, X. Yang and D. Zhang, Appl. Surf. Sci., 255, 8363 (2009); https://doi.org/10.1016/j.apsusc.2009.05.089.
- A.J. López, J. Rams and A. Ureña, Surf. Coat. Technol., 205, 4183 (2011); https://doi.org/10.1016/j.surfcoat.2011.03.011.
- C. Taltavull, B. Torres, A.J. Lopez, P. Rodrigo, E. Otero, A. Atrens and J. Rams, Mater. Des., 57, 40 (2014); https://doi.org/10.1016/j.matdes.2013.12.069.
- G. Reiners and M. Griepentrog, Surf. Coat. Technol., 76-77, 809 (1995); https://doi.org/10.1016/02578-9729(50)26088-.
- G. Wu, W. Dai, H. Zheng and A. Wang, Surf. Coat. Technol., 205, 2067 (2010); https://doi.org/10.1016/j.surfcoat.2010.08.103.
- L. Zhao and E. Lugscheider, Surf. Coat. Technol., 162, 6 (2003); https://doi.org/10.1016/S0257-8972(02)00560-1.
- T.F. Kubatik, Z. Pala, K. Neufuss, M. Vilémová, R. Musálek, J. Stoulil, P. Slepièka and T. Chráska, Surf. Coat. Technol., 282, 163 (2015); https://doi.org/10.1016/j.surfcoat.2015.10.032.
- J. Formosa, J.M. Chimenos, A.M. Lacasta and L. Haurie, Thermochim. Acta, 515, 43 (2011); https://doi.org/10.1016/j.tca.2010.12.018.
- E. Suzuki, Y. Nomoto, M. Okamoto and Y. Ono, Catal. Lett., 48, 75 (1997); https://doi.org/10.1023/A:1019050314878.
- R.V. Siriwardane and R.W. Stevens Jr., Ind. Eng. Chem. Res., 48, 2135 (2009); https://doi.org/10.1021/ie8011598.
- J. Lv, L. Qiu and B. Qu, J. Cryst. Growth, 267, 676 (2004); https://doi.org/10.1016/j.jcrysgro.2004.04.034.
- Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang and Y. Qian, Chem. Mater., 13, 435 (2001); https://doi.org/10.1021/cm000607e.
- C. Yan, D. Xue, L. Zou, X. Yan and W. Wang, J. Cryst. Growth, 282, 448 (2005); https://doi.org/10.1016/j.jcrysgro.2005.05.038.
- M. Dinamani and P.V. Kamath, J. Appl. Electrochem., 34, 899 (2004); https://doi.org/10.1023/B:JACH.0000040437.81319.56.
- Y. Zhu, Q. Zhao, Y.-H. Zhang and G. Wu, Surf. Coat. Technol., 206, 2961 (2012); https://doi.org/10.1016/j.surfcoat.2011.12.029.
- Y. Zhu, G. Wu, Y.-H. Zhang and Q. Zhao, Appl. Surf. Sci., 257, 6129 (2011); https://doi.org/10.1016/j.apsusc.2011.02.017.
- T. Ishizaki, S.-P. Cho and N. Saito, CrystEngComm, 11, 2338 (2009); https://doi.org/10.1039/b907490b.
- R. Salomão, L.M. Milena, M.H. Wakamatsu and V.C. Pandolfelli, Ceram. Int., 37, 3063 (2011); https://doi.org/10.1016/j.ceramint.2011.05.034.
- S. Nishimura, A. Takagaki and K. Ebitani, Green Chem., 15, 2026 (2013); https://doi.org/10.1039/c3gc40405f.
- A. Vaccari, Appl. Clay Sci., 22, 75 (2002); https://doi.org/10.1016/S0169-1317(02)00112-6.
- S. Miyata and T. Kumura, Chem. Lett., 2, 843 (1973); https://doi.org/10.1246/cl.1973.843.
- M. Ogawa and H. Kaiho, Langmuir, 18, 4240 (2002); https://doi.org/10.1021/la0117045.
- Y. Yang, X. Zhao, Y. Zhu and F. Zhang, Chem. Mater., 24, 81 (2012); https://doi.org/10.1021/cm201936b.
- Z.P. Xu, G.S. Stevenson, C.Q. Lu, G.Q. Lu, P.F. Bartlett and P.P. Gray, J. Am. Chem. Soc., 128, 36 (2006); https://doi.org/10.1021/ja056652a.
- Q. Wang, H.H. Tay, Z. Guo, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo and A. Borgna, Appl. Clay Sci., 55, 18 (2012); https://doi.org/10.1016/j.clay.2011.07.024.
- F. Winter, A.J. van Dillen and K.P. de Jong, Chem. Commun., 3977 (2005); https://doi.org/10.1039/b506173c.
- S. Miyata, Clays Clay Miner., 31, 305 (1983); https://doi.org/10.1346/CCMN.1983.0310409.
- D. Song, A.B. Ma, J. Jiang, P. Lin, D. Yang and J. Fan, Corros. Sci., 52, 481 (2010); https://doi.org/10.1016/j.corsci.2009.10.004.
- C. Yao, H. Lv, T. Zhu, W. Zheng, X. Yuan and W. Gao, J. Alloys Compd., 670, 239 (2016); https://doi.org/10.1016/j.jallcom.2016.02.026.
- M. Mosialek, G. Mordarski, P. Nowak, W. Simka, G. Nawrat, M. Hanke, R.P. Socha and J. Michalska, Surf. Coat. Technol., 206, 51 (2011); https://doi.org/10.1016/j.surfcoat.2011.06.035.
- M. Razavi, M. Fathi, O. Savabi, D. Vashaee and L. Tayebi, Mater. Sci. Eng. C, 41, 168 (2014); https://doi.org/10.1016/j.msec.2014.04.039.
References
B.L. Mordike and T. Ebert, Mater. Sci. Eng. A, 302, 37 (2001); https://doi.org/10.1016/S0921-5093(00)01351-4.
S. Thomas, N.V. Medhekar, G.S. Frankel and N. Birbilis, Curr. Opin. Solid State Mater. Sci., 19, 85 (2015); https://doi.org/10.1016/j.cossms.2014.09.005
R. Wu, Y. Yan, G. Wang, L. E. Murr, W. Han, Z. Zhang and M. Zhang, Int. Mater. Rev., 60, 65 (2015); https://doi.org/10.1179/1743280414Y.0000000044.
L. Hou, T. Wang, R. Wu, J. Zhang, M. Zhang, A. Dong, B. Sun, S. Betsofen and B. Krit, J. Mater. Sci. Technol., 34, 317 (2018); https://doi.org/10.1016/j.jmst.2017.02.005.
M. Esmaily, D.B. Blücher, R.W. Lindstrom, J.E. Svensson and L.G. Johansson, J. Electrochem. Soc., 162, C260 (2015); https://doi.org/10.1149/2.0801506jes.
M. Shahabi-Navid, M. Esmaily, J.E. Svensson, M. Halvarsson, L. Nyborg, Y. Cao and L.G. Johansson, J. Electrochem. Soc., 161, C277 (2014); https://doi.org/10.1149/2.088405jes.
Z. Pu, S. Yang, G.-L. Song, O.W. Dillon Jr., D.A. Puleo and I.S. Jawahir, Scr. Mater., 65, 520 (2011); https://doi.org/10.1016/j.scriptamat.2011.06.013.
M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith and G.A. Botton, Corros. Sci., 77, 151 (2013); https://doi.org/10.1016/j.corsci.2013.07.038.
R.M. Asmussen, P. Jakupi, M. Danaie, G.A. Botton and D.W. Shoesmith, Corros. Sci., 75, 114 (2013); https://doi.org/10.1016/j.corsci.2013.05.022.
H.-Y. Ha, H.J. Kim, S-M. Baek, B. Kim, S-D. Sohn, H.-J. Shin, H.Y. Jeong, S.H. Park, C.D. Yim, B.S. You, J.G. Lee and S.S. Park, Scr. Mater., 109, 38 (2015); https://doi.org/10.1016/j.scriptamat.2015.07.013.
R.K. Singh Raman, N. Birbilis and J. Efthimiadis, Corros. Eng. Sci. Technol., 39, 346 (2004); https://doi.org/10.1179/174327804X13208.
M. Esmaily, M. Shahabi-Navid, J.E. Svensson, M. Halvarsson, L. Nyborg, Y. Cao and L.G. Johansson, Corros. Sci., 90, 420 (2015); https://doi.org/10.1016/j.corsci.2014.10.040.
J. Liu, Y. Song, J. Chen, P. Chen, D. Shan and E.H. Han, Electrochim. Acta, 189, 190 (2016); https://doi.org/10.1016/j.electacta.2015.12.075.
H. Ardelean, I. Frateur, S. Zanna, A. Atrens and P. Marcus, Corros. Sci., 51, 3030 (2009); https://doi.org/10.1016/j.corsci.2009.08.030.
L. Chai, X. Yu, Z. Yang, Y. Wang and M. Okido, Corros. Sci., 50, 3274 (2008); https://doi.org/10.1016/j.corsci.2008.08.038.
F. Pan, X. Yang and D. Zhang, Appl. Surf. Sci., 255, 8363 (2009); https://doi.org/10.1016/j.apsusc.2009.05.089.
A.J. López, J. Rams and A. Ureña, Surf. Coat. Technol., 205, 4183 (2011); https://doi.org/10.1016/j.surfcoat.2011.03.011.
C. Taltavull, B. Torres, A.J. Lopez, P. Rodrigo, E. Otero, A. Atrens and J. Rams, Mater. Des., 57, 40 (2014); https://doi.org/10.1016/j.matdes.2013.12.069.
G. Reiners and M. Griepentrog, Surf. Coat. Technol., 76-77, 809 (1995); https://doi.org/10.1016/02578-9729(50)26088-.
G. Wu, W. Dai, H. Zheng and A. Wang, Surf. Coat. Technol., 205, 2067 (2010); https://doi.org/10.1016/j.surfcoat.2010.08.103.
L. Zhao and E. Lugscheider, Surf. Coat. Technol., 162, 6 (2003); https://doi.org/10.1016/S0257-8972(02)00560-1.
T.F. Kubatik, Z. Pala, K. Neufuss, M. Vilémová, R. Musálek, J. Stoulil, P. Slepièka and T. Chráska, Surf. Coat. Technol., 282, 163 (2015); https://doi.org/10.1016/j.surfcoat.2015.10.032.
J. Formosa, J.M. Chimenos, A.M. Lacasta and L. Haurie, Thermochim. Acta, 515, 43 (2011); https://doi.org/10.1016/j.tca.2010.12.018.
E. Suzuki, Y. Nomoto, M. Okamoto and Y. Ono, Catal. Lett., 48, 75 (1997); https://doi.org/10.1023/A:1019050314878.
R.V. Siriwardane and R.W. Stevens Jr., Ind. Eng. Chem. Res., 48, 2135 (2009); https://doi.org/10.1021/ie8011598.
J. Lv, L. Qiu and B. Qu, J. Cryst. Growth, 267, 676 (2004); https://doi.org/10.1016/j.jcrysgro.2004.04.034.
Y. Ding, G. Zhang, H. Wu, B. Hai, L. Wang and Y. Qian, Chem. Mater., 13, 435 (2001); https://doi.org/10.1021/cm000607e.
C. Yan, D. Xue, L. Zou, X. Yan and W. Wang, J. Cryst. Growth, 282, 448 (2005); https://doi.org/10.1016/j.jcrysgro.2005.05.038.
M. Dinamani and P.V. Kamath, J. Appl. Electrochem., 34, 899 (2004); https://doi.org/10.1023/B:JACH.0000040437.81319.56.
Y. Zhu, Q. Zhao, Y.-H. Zhang and G. Wu, Surf. Coat. Technol., 206, 2961 (2012); https://doi.org/10.1016/j.surfcoat.2011.12.029.
Y. Zhu, G. Wu, Y.-H. Zhang and Q. Zhao, Appl. Surf. Sci., 257, 6129 (2011); https://doi.org/10.1016/j.apsusc.2011.02.017.
T. Ishizaki, S.-P. Cho and N. Saito, CrystEngComm, 11, 2338 (2009); https://doi.org/10.1039/b907490b.
R. Salomão, L.M. Milena, M.H. Wakamatsu and V.C. Pandolfelli, Ceram. Int., 37, 3063 (2011); https://doi.org/10.1016/j.ceramint.2011.05.034.
S. Nishimura, A. Takagaki and K. Ebitani, Green Chem., 15, 2026 (2013); https://doi.org/10.1039/c3gc40405f.
A. Vaccari, Appl. Clay Sci., 22, 75 (2002); https://doi.org/10.1016/S0169-1317(02)00112-6.
S. Miyata and T. Kumura, Chem. Lett., 2, 843 (1973); https://doi.org/10.1246/cl.1973.843.
M. Ogawa and H. Kaiho, Langmuir, 18, 4240 (2002); https://doi.org/10.1021/la0117045.
Y. Yang, X. Zhao, Y. Zhu and F. Zhang, Chem. Mater., 24, 81 (2012); https://doi.org/10.1021/cm201936b.
Z.P. Xu, G.S. Stevenson, C.Q. Lu, G.Q. Lu, P.F. Bartlett and P.P. Gray, J. Am. Chem. Soc., 128, 36 (2006); https://doi.org/10.1021/ja056652a.
Q. Wang, H.H. Tay, Z. Guo, L. Chen, Y. Liu, J. Chang, Z. Zhong, J. Luo and A. Borgna, Appl. Clay Sci., 55, 18 (2012); https://doi.org/10.1016/j.clay.2011.07.024.
F. Winter, A.J. van Dillen and K.P. de Jong, Chem. Commun., 3977 (2005); https://doi.org/10.1039/b506173c.
S. Miyata, Clays Clay Miner., 31, 305 (1983); https://doi.org/10.1346/CCMN.1983.0310409.
D. Song, A.B. Ma, J. Jiang, P. Lin, D. Yang and J. Fan, Corros. Sci., 52, 481 (2010); https://doi.org/10.1016/j.corsci.2009.10.004.
C. Yao, H. Lv, T. Zhu, W. Zheng, X. Yuan and W. Gao, J. Alloys Compd., 670, 239 (2016); https://doi.org/10.1016/j.jallcom.2016.02.026.
M. Mosialek, G. Mordarski, P. Nowak, W. Simka, G. Nawrat, M. Hanke, R.P. Socha and J. Michalska, Surf. Coat. Technol., 206, 51 (2011); https://doi.org/10.1016/j.surfcoat.2011.06.035.
M. Razavi, M. Fathi, O. Savabi, D. Vashaee and L. Tayebi, Mater. Sci. Eng. C, 41, 168 (2014); https://doi.org/10.1016/j.msec.2014.04.039.