Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antimicrobial Activity of Isomeric Pyridyl-Tetrazole Derivative Ligands and their Bivalent Metal Complexes
Corresponding Author(s) : V. Krishna
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
Nickel(II) and zinc(II) complexes were synthesized from bidentate isomeric pyridyl tetrazole ligands such as 2-(1-vinyl-1H-tetrazol-5-yl)pyridine (L1), N,N-dimethyl-3-(5-(pyridin-2-yl)-1H-tetrazol-1-yl)propan-1-amine (L2), 2-(2-vinyl-2H-tetrazol-5-yl)pyridine (L3), N,N-dimethyl-3-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)propan-1-amine (L4). All the complexes were characterized in the light of elemental analysis, FTIR, UV-visible and magnetic studies. The spectroscopic data suggested that, the ligands act as neutral and monobasic bidentate ligands and form octahedral complexes with general formula [M(L1-4)2Cl2] (M = Ni(II) and Zn(II). The isomeric pyridyl-tetrazole derivative ligands and their Ni(II) and Zn(II) complexes have also been screened for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris) and antifungal activities (Aspergillus niger, Candida albicans) by MIC method.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- (a) P. Lin, W. Clegg, R.W. Harrington and R.A. Henderson, Dalton Trans., 2388 (2005); doi:10.1039/b505077d; (b) T. Hu, L. Liu, X. Lv, X. Chen, H. He, F. Dai, G. Zhang and D. Sun, Polyhedron, 29, 296 (2010); doi:10.1016/j.poly.2009.05.015; (c) Y. Qiu, B. Liu, G. Peng, J. Cai, H. Deng and M. Zeller, Inorg. Chem. Commun., 13, 749 (2010); doi:10.1016/j.inoche.2010.03.038.
- R.J. Herr, Bioorg. Med. Chem., 10, 3379 (2002); doi:10.1016/S0968-0896(02)00239-0.
- J. McGinley and A. Fleming, J. Incl. Phenom. Macrocycl. Chem., 61, 1 (2008); doi:10.1007/s10847-007-9396-y.
- G. Aromi, L.A. Barrios, O. Roubeau and P. Gamez, Coord. Chem. Rev., 255, 485 (2011); doi:10.1016/j.ccr.2010.10.038.
- (a) Z.P. Demko and K.B. Sharpless, J. Org. Chem., 66, 7945 (2001); doi:10.1021/jo010635w; (b) F. Himo, Z.P. Demko, L. Noodleman and K.B. Sharpless, J. Am. Chem. Soc., 125, 9983 (2003); doi:10.1021/ja030204q.
- (a) Y. Tao, J.R. Li, Z. Chang and X.H. Bu, Cryst. Growth Des., 10, 564 (2010); doi:10.1021/cg900934u; (b) M.F. Wu, M.S. Wang, S.P. Guo, F.K. Zheng, H.F. Chen, X.M. Jiang, G.N. Liu, G.C. Guo and J.S. Huang, Cryst. Growth Des., 11, 372 (2011); doi:10.1021/cg100817s.
- T. Mavromoustakos, A. Kolocouris, M. Zervou, P. Roumelioti, J. Matsoukas and R. Weisemann, J. Med. Chem., 42, 1714 (1999); doi:10.1021/jm980499w.
- (a) R.A. Powers and B.K. Shoichet, J. Med. Chem., 45, 3222 (2002); doi:10.1021/jm020002p; (b) S.Y. Kang, S.H. Lee, H.J. Seo, M.E. Jung, K. Ahn, J. Kim and J. Lee, Bioorg. Med. Chem. Lett., 18, 2385 (2008); doi:10.1016/j.bmcl.2008.02.061.
- (a) G.C.G. Pais, X. Zhang, C. Marchand, N. Neamati, K. Cowansage, E.S. Svarovskaia, V.K. Pathak, Y. Tang, M. Nicklaus, Y. Pommier and T.R. Burke Jr., J. Med. Chem., 45, 3184 (2002); doi:10.1021/jm020037p; (b) B.C.H. May and A.D. Abell, J. Chem. Soc., Perkin Trans. 1, 172 (2002).
- M.S. Surendrababu and K.H. Reddy, J. Chil. Chem. Soc., 59, 843 (2012); doi:10.1002/jccs.201100372.
- (a) A.D. Bond, A. Fleming, J. Gaire, F. Kelleher, J. McGinley, V. McKee and U. Sheridan, Polyhedron, 33, 289 (2012); doi:10.1016/j.poly.2011.11.038; (b) A. Fleming, F. Kelleher, M.F. Mahon, J. McGinley and V. Prajapati, Tetrahedron, 61, 7002 (2005); doi:10.1016/j.tet.2005.05.013.
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); doi:10.1016/S0010-8545(00)80009-0.
- A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman, edn 3 (1961).
- (a) H. Gallardo, R. Magnago and A.J. Bortoluzzi, J. Liq. Cryst., 28, 1343 (2001); doi:10.1080/02678290110066813; (b) P.A. Bethel, M.S. Hill, M.F. Mahon and K.C. Molloy, J. Chem. Soc., Perkin Trans. 1, 3507 (1999); doi:10.1039/a905336k.
- P.N. Gaponik, S.V. Voitekhovich and A.S. Lyakhov, Chem. Heterocycl. Comp., 36, 326 (2000); doi:10.1007/BF02256871.
- A.D. Kulkarni, S.A. Patil, V.H. Naik and P.S. Badami, Med. Chem. Res., 20, 346 (2011); doi:10.1007/s00044-010-9327-0.
- S. Chandra and L.K. Gupta, Spectrochim. Acta A., 62, 1089 (2005); doi:10.1016/j.saa.2005.04.005.
- P.K. Singh and D.N. Kumar, Spectrochim. Acta A, 64, 853 (2006); doi:10.1016/j.saa.2005.08.014.
- A.K. Sharma and S. Chandra, Spectrochim. Acta A, 78, 337 (2011); doi:10.1016/j.saa.2010.10.017.
- T.A. Yousef, G.M. Abu El-Reash, O.A. El-Gammal and R.A. Bedier, J. Mol. Struct., 1029, 149 (2012); doi:10.1016/j.molstruc.2012.06.050.
References
(a) P. Lin, W. Clegg, R.W. Harrington and R.A. Henderson, Dalton Trans., 2388 (2005); doi:10.1039/b505077d; (b) T. Hu, L. Liu, X. Lv, X. Chen, H. He, F. Dai, G. Zhang and D. Sun, Polyhedron, 29, 296 (2010); doi:10.1016/j.poly.2009.05.015; (c) Y. Qiu, B. Liu, G. Peng, J. Cai, H. Deng and M. Zeller, Inorg. Chem. Commun., 13, 749 (2010); doi:10.1016/j.inoche.2010.03.038.
R.J. Herr, Bioorg. Med. Chem., 10, 3379 (2002); doi:10.1016/S0968-0896(02)00239-0.
J. McGinley and A. Fleming, J. Incl. Phenom. Macrocycl. Chem., 61, 1 (2008); doi:10.1007/s10847-007-9396-y.
G. Aromi, L.A. Barrios, O. Roubeau and P. Gamez, Coord. Chem. Rev., 255, 485 (2011); doi:10.1016/j.ccr.2010.10.038.
(a) Z.P. Demko and K.B. Sharpless, J. Org. Chem., 66, 7945 (2001); doi:10.1021/jo010635w; (b) F. Himo, Z.P. Demko, L. Noodleman and K.B. Sharpless, J. Am. Chem. Soc., 125, 9983 (2003); doi:10.1021/ja030204q.
(a) Y. Tao, J.R. Li, Z. Chang and X.H. Bu, Cryst. Growth Des., 10, 564 (2010); doi:10.1021/cg900934u; (b) M.F. Wu, M.S. Wang, S.P. Guo, F.K. Zheng, H.F. Chen, X.M. Jiang, G.N. Liu, G.C. Guo and J.S. Huang, Cryst. Growth Des., 11, 372 (2011); doi:10.1021/cg100817s.
T. Mavromoustakos, A. Kolocouris, M. Zervou, P. Roumelioti, J. Matsoukas and R. Weisemann, J. Med. Chem., 42, 1714 (1999); doi:10.1021/jm980499w.
(a) R.A. Powers and B.K. Shoichet, J. Med. Chem., 45, 3222 (2002); doi:10.1021/jm020002p; (b) S.Y. Kang, S.H. Lee, H.J. Seo, M.E. Jung, K. Ahn, J. Kim and J. Lee, Bioorg. Med. Chem. Lett., 18, 2385 (2008); doi:10.1016/j.bmcl.2008.02.061.
(a) G.C.G. Pais, X. Zhang, C. Marchand, N. Neamati, K. Cowansage, E.S. Svarovskaia, V.K. Pathak, Y. Tang, M. Nicklaus, Y. Pommier and T.R. Burke Jr., J. Med. Chem., 45, 3184 (2002); doi:10.1021/jm020037p; (b) B.C.H. May and A.D. Abell, J. Chem. Soc., Perkin Trans. 1, 172 (2002).
M.S. Surendrababu and K.H. Reddy, J. Chil. Chem. Soc., 59, 843 (2012); doi:10.1002/jccs.201100372.
(a) A.D. Bond, A. Fleming, J. Gaire, F. Kelleher, J. McGinley, V. McKee and U. Sheridan, Polyhedron, 33, 289 (2012); doi:10.1016/j.poly.2011.11.038; (b) A. Fleming, F. Kelleher, M.F. Mahon, J. McGinley and V. Prajapati, Tetrahedron, 61, 7002 (2005); doi:10.1016/j.tet.2005.05.013.
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); doi:10.1016/S0010-8545(00)80009-0.
A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman, edn 3 (1961).
(a) H. Gallardo, R. Magnago and A.J. Bortoluzzi, J. Liq. Cryst., 28, 1343 (2001); doi:10.1080/02678290110066813; (b) P.A. Bethel, M.S. Hill, M.F. Mahon and K.C. Molloy, J. Chem. Soc., Perkin Trans. 1, 3507 (1999); doi:10.1039/a905336k.
P.N. Gaponik, S.V. Voitekhovich and A.S. Lyakhov, Chem. Heterocycl. Comp., 36, 326 (2000); doi:10.1007/BF02256871.
A.D. Kulkarni, S.A. Patil, V.H. Naik and P.S. Badami, Med. Chem. Res., 20, 346 (2011); doi:10.1007/s00044-010-9327-0.
S. Chandra and L.K. Gupta, Spectrochim. Acta A., 62, 1089 (2005); doi:10.1016/j.saa.2005.04.005.
P.K. Singh and D.N. Kumar, Spectrochim. Acta A, 64, 853 (2006); doi:10.1016/j.saa.2005.08.014.
A.K. Sharma and S. Chandra, Spectrochim. Acta A, 78, 337 (2011); doi:10.1016/j.saa.2010.10.017.
T.A. Yousef, G.M. Abu El-Reash, O.A. El-Gammal and R.A. Bedier, J. Mol. Struct., 1029, 149 (2012); doi:10.1016/j.molstruc.2012.06.050.