Copyright (c) 2023 R. SAGAYARAJ
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of ZnO on the Structural and Magnetodielectric Properties of MgFe2O4 Nanocomposite Prepared by Sol-Gel Method
Corresponding Author(s) : C. VENKATARAJU
Asian Journal of Chemistry,
Vol. 35 No. 9 (2023): Vol 35 Issue 9, 2023
Abstract
Zinc oxide doped magnesium ferrite (Mg1-xZnxFe2O4) nanocomposite was synthesized using sol-gel method and demonstrated to have a cubic spinel structure, with a range of crystallite sizes (19-40 nm) and lattice constants (8.432-8.399 Å). The material was found to have two prominent vibrational modes for tetrahedral (446 cm–1) and octahedral (584 cm–1). The dielectric constant was higher at low frequencies and decreased at higher frequencies, while the saturation magnetization decreased (16 to 6 emu/g) gradually with an increase in Zn2+, likely due to the presence of non-magnetic Zn2+. The magneto-dielectric constant was found to increase with the magnetic field for MgFe2O4 and up to a magnetic field of 2000 Oe for the zinc magnesium nanocomposites, after which it decreased for higher magnetic fields. A positive and negative change in magneto-capacitance as a function of the magnetic field was also observed. The antibacterial activity suggests that the substitution of Zn2+ into magnesium ferrite can be an effective method for improving antibacterial activity, with the potential to damage the bacterial membrane and other components through positively charged ions and ROS generated by nanoparticles. Potential uses for this synthetic material include magneto-optical recording and magnetic biosensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Vedrtnam, K. Kalauni, S. Dubey and A. Kumar, AIMS Mater. Sci., 7, 800 (2020); https://doi.org/10.3934/matersci.2020.6.800
- A. Prakash, R. Sagayaraj, D. Jayarajan, S. Aravazhi, S. Sebastian, S. Sylvestre and C. Nyanga, Chem. Africa, 6, 1269 (2023); https://doi.org/10.1007/s42250-022-00570-7
- R. Sagayaraj, S. Aravazhi, P. Praveen and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 29, 2151 (2018); https://doi.org/10.1007/s10854-017-8127-4
- R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, J. Supercond. Nov. Magn., 31, 3379 (2018); https://doi.org/10.1007/s10948-018-4593-z
- R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, J. Inorg. Organomet. Polym. Mater., 29, 2252 (2019); https://doi.org/10.1007/s10904-019-01183-3
- X. Zeng, Z. Hou, J. Ju, L. Gao, J. Zhang and Y. Peng, Materials, 15, 2422 (2022); https://doi.org/10.3390/ma15072422
- A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L. Kennedy and M. Bououdina, Superlattices Microstruct., 64, 118 (2013); https://doi.org/10.1016/j.spmi.2013.09.021
- Z. Zhang, Mater. Today Commun., 26, 101734 (2021); https://doi.org/10.1016/j.mtcomm.2020.101734
- S. Raghuvanshi, F. Mazaleyrat and S.N. Kane, AIP Adv., 8, 047804 (2018); https://doi.org/10.1063/1.4994015
- M.A. Gabal and A.A. Al-Juaid, J. Mater. Sci. Mater. Electron., 31, 10055 (2020); https://doi.org/10.1007/s10854-020-03551-z
- H. Saqib, S. Rahman, R. Susilo, B. Chen and N. Dai, AIP Adv., 9, 055306 (2019); https://doi.org/10.1063/1.5093221
- H. Liu, A. Li, X. Ding, F. Yang and K. Sun, Solid State Sci., 93, 101 (2019); https://doi.org/10.1016/j.solidstatesciences.2019.05.005
- P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sánchez-Fuentes, A. Jasso-Terán, L.E. De León-Prado, J. Méndez-Nonell and G.F. Hurtado-López, J. Magn. Magn. Mater., 427, 268 (2017); https://doi.org/10.1016/j.jmmm.2016.10.078
- S. Raghuvanshi, M. Satalkar, P. Tapkir, N. Ghodke and S.N. Kane, J. Phys. Conf. Ser., 534, 012031 (2014); https://doi.org/10.1088/1742-6596/534/1/012031
- M.V. Nikolic, Z.Z. Vasiljevic, M.D. Lukovic, V.P. Pavlovic, J.B. Krstic, J. Vujancevic, N. Tadic, B. Vlahovic and V.B. Pavlovic, Int. J. Appl. Ceram. Technol., 16, 981 (2019); https://doi.org/10.1111/ijac.13190
- R. Poongodi, S. Senguttuvan and R. Sagayaraj, Asian J. Chem., 35, 1781 (2023); https://doi.org/10.14233/ajchem.2023.27807
- J.P. Dhal, B.G. Mishra and G. Hota, RSC Adv., 5, 58072 (2015); https://doi.org/10.1039/C5RA05894E
- V. Marghussian, Magnetic Properties of Nano-Glass Ceramics, In: Nano-Glass Ceramics Processing, Properties and Applications, William Andrew Applied Science Publishers, Chap. 4, pp. 181-223 (2015).
- N. Sanpo, C.C. Berndt, C. Wen and J. Wang, Acta Biomater., 9, 5830 (2013); https://doi.org/10.1016/j.actbio.2012.10.037
- R. Sagayaraj, Int. Nano Lett., 12, 345 (2022); https://doi.org/10.1007/s40089-022-00368-y
- K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule and B.B. Mamba, Mater. Sci. Eng. C, 107, 110314 (2020); https://doi.org/10.1016/j.msec.2019.110314
- M.I.A. Abdel Maksoud, M.M. Ghobashy, A.S. Kodous, R.A. Fahim, A.I. Osman, A.H. Al-Muhtaseb, D.W. Rooney, M.A. Mamdouh, N. Nady and A.H. Ashour, Nanotechnol. Rev., 11, 372 (2022); https://doi.org/10.1515/ntrev-2022-0027
- Y. Wang, Y. Miao, G. Li, M. Su, X. Chen, H. Zhang, Y. Zhang, W. Jiao, Y. He, J. Yi, X. Liu and H. Fan, Mater. Today Adv., 8, 100119 (2020); https://doi.org/10.1016/j.mtadv.2020.100119
- H. Malik, A. Mahmood, K. Mahmood, M.Y. Lodhi, M.F. Warsi, I. Shakir, H. Wahab, M. Asghar and M.A. Khan, Ceram. Int., 40, 9439 (2014); https://doi.org/10.1016/j.ceramint.2014.02.015
- P. Manimuthu, N. Shanker, K.S. Kumar and C. Venkateswaran, Physica B, 448, 354 (2014); https://doi.org/10.1016/j.physb.2014.03.051
- M.A. Gabal, D.F. Katowah, M.A. Hussein, A.A. Al-Juaid, A. Awad, A.M. Abdel-Daiem, A. Saeed, M.M. Hessien and A.M. Asiri, ACS Omega, 6, 22180 (2021); https://doi.org/10.1021/acsomega.1c02858
- N.M. Sadik, A.A. Sattar, M.M. Rashad and H.M. Elsayed, SN Appl. Sci., 2, 620 (2020); https://doi.org/10.1007/s42452-020-2450-8
- H. Singh and K.L. Yadav, J. Am. Ceram. Soc., 98, 574 (2015); https://doi.org/10.1111/jace.13316
- Z. Zeng, H. Wu, C. Zhou, X. Qin, J. He, C. Ji, X. Deng, R. Gao, C. Fu, W. Cai, G. Chen, Z. Wang and X. Lei, J. Asian Ceram. Soc., 8, 1206 (2020); https://doi.org/10.1080/21870764.2020.1833416
- S. Udhayan, R. Udayakumar, R. Sagayaraj and K. Gurusamy, BioNanoSci., 11, 703 (2021); https://doi.org/10.1007/s12668-021-00864-z
- A. Prakash, R. Sagayaraj, D. Jayarajan, S. Aravazhi, G. Chandrasekaran and R. Nithya, Asian J. Chem., 34, 2288 (2022); https://doi.org/10.14233/ajchem.2022.23840
- D. Jayarajan, R. Sagayaraj, S. Silvan, S. Sebastian, R. Nithya and S. Sujeetha, Chem. Africa, 6, 1875 (2023); https://doi.org/10.1007/s42250-023-00615-5
- R. Sagayaraj, T. Dhineshkumar, A. Prakash, S. Aravazhi, D. Jayarajan, G. Chandrasekaran and S. Sebastian, Chem. Phys. Lett., 759, 137944 (2020); https://doi.org/10.1016/j.cplett.2020.137944
- O.A. Awoyinka, I.O. Balogun and A.A. Ogunnow, J. Med. Plants Res., 1, 63 (2007).
- National Committee for Clinical Laboratory Standards (NCCLS), Performance Standards for Antimicrobial Disc Susceptibility Tests. PA: NCCLS Publications 25 (1993).
References
A. Vedrtnam, K. Kalauni, S. Dubey and A. Kumar, AIMS Mater. Sci., 7, 800 (2020); https://doi.org/10.3934/matersci.2020.6.800
A. Prakash, R. Sagayaraj, D. Jayarajan, S. Aravazhi, S. Sebastian, S. Sylvestre and C. Nyanga, Chem. Africa, 6, 1269 (2023); https://doi.org/10.1007/s42250-022-00570-7
R. Sagayaraj, S. Aravazhi, P. Praveen and G. Chandrasekaran, J. Mater. Sci. Mater. Electron., 29, 2151 (2018); https://doi.org/10.1007/s10854-017-8127-4
R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, J. Supercond. Nov. Magn., 31, 3379 (2018); https://doi.org/10.1007/s10948-018-4593-z
R. Sagayaraj, S. Aravazhi and G. Chandrasekaran, J. Inorg. Organomet. Polym. Mater., 29, 2252 (2019); https://doi.org/10.1007/s10904-019-01183-3
X. Zeng, Z. Hou, J. Ju, L. Gao, J. Zhang and Y. Peng, Materials, 15, 2422 (2022); https://doi.org/10.3390/ma15072422
A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L. Kennedy and M. Bououdina, Superlattices Microstruct., 64, 118 (2013); https://doi.org/10.1016/j.spmi.2013.09.021
Z. Zhang, Mater. Today Commun., 26, 101734 (2021); https://doi.org/10.1016/j.mtcomm.2020.101734
S. Raghuvanshi, F. Mazaleyrat and S.N. Kane, AIP Adv., 8, 047804 (2018); https://doi.org/10.1063/1.4994015
M.A. Gabal and A.A. Al-Juaid, J. Mater. Sci. Mater. Electron., 31, 10055 (2020); https://doi.org/10.1007/s10854-020-03551-z
H. Saqib, S. Rahman, R. Susilo, B. Chen and N. Dai, AIP Adv., 9, 055306 (2019); https://doi.org/10.1063/1.5093221
H. Liu, A. Li, X. Ding, F. Yang and K. Sun, Solid State Sci., 93, 101 (2019); https://doi.org/10.1016/j.solidstatesciences.2019.05.005
P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sánchez-Fuentes, A. Jasso-Terán, L.E. De León-Prado, J. Méndez-Nonell and G.F. Hurtado-López, J. Magn. Magn. Mater., 427, 268 (2017); https://doi.org/10.1016/j.jmmm.2016.10.078
S. Raghuvanshi, M. Satalkar, P. Tapkir, N. Ghodke and S.N. Kane, J. Phys. Conf. Ser., 534, 012031 (2014); https://doi.org/10.1088/1742-6596/534/1/012031
M.V. Nikolic, Z.Z. Vasiljevic, M.D. Lukovic, V.P. Pavlovic, J.B. Krstic, J. Vujancevic, N. Tadic, B. Vlahovic and V.B. Pavlovic, Int. J. Appl. Ceram. Technol., 16, 981 (2019); https://doi.org/10.1111/ijac.13190
R. Poongodi, S. Senguttuvan and R. Sagayaraj, Asian J. Chem., 35, 1781 (2023); https://doi.org/10.14233/ajchem.2023.27807
J.P. Dhal, B.G. Mishra and G. Hota, RSC Adv., 5, 58072 (2015); https://doi.org/10.1039/C5RA05894E
V. Marghussian, Magnetic Properties of Nano-Glass Ceramics, In: Nano-Glass Ceramics Processing, Properties and Applications, William Andrew Applied Science Publishers, Chap. 4, pp. 181-223 (2015).
N. Sanpo, C.C. Berndt, C. Wen and J. Wang, Acta Biomater., 9, 5830 (2013); https://doi.org/10.1016/j.actbio.2012.10.037
R. Sagayaraj, Int. Nano Lett., 12, 345 (2022); https://doi.org/10.1007/s40089-022-00368-y
K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule and B.B. Mamba, Mater. Sci. Eng. C, 107, 110314 (2020); https://doi.org/10.1016/j.msec.2019.110314
M.I.A. Abdel Maksoud, M.M. Ghobashy, A.S. Kodous, R.A. Fahim, A.I. Osman, A.H. Al-Muhtaseb, D.W. Rooney, M.A. Mamdouh, N. Nady and A.H. Ashour, Nanotechnol. Rev., 11, 372 (2022); https://doi.org/10.1515/ntrev-2022-0027
Y. Wang, Y. Miao, G. Li, M. Su, X. Chen, H. Zhang, Y. Zhang, W. Jiao, Y. He, J. Yi, X. Liu and H. Fan, Mater. Today Adv., 8, 100119 (2020); https://doi.org/10.1016/j.mtadv.2020.100119
H. Malik, A. Mahmood, K. Mahmood, M.Y. Lodhi, M.F. Warsi, I. Shakir, H. Wahab, M. Asghar and M.A. Khan, Ceram. Int., 40, 9439 (2014); https://doi.org/10.1016/j.ceramint.2014.02.015
P. Manimuthu, N. Shanker, K.S. Kumar and C. Venkateswaran, Physica B, 448, 354 (2014); https://doi.org/10.1016/j.physb.2014.03.051
M.A. Gabal, D.F. Katowah, M.A. Hussein, A.A. Al-Juaid, A. Awad, A.M. Abdel-Daiem, A. Saeed, M.M. Hessien and A.M. Asiri, ACS Omega, 6, 22180 (2021); https://doi.org/10.1021/acsomega.1c02858
N.M. Sadik, A.A. Sattar, M.M. Rashad and H.M. Elsayed, SN Appl. Sci., 2, 620 (2020); https://doi.org/10.1007/s42452-020-2450-8
H. Singh and K.L. Yadav, J. Am. Ceram. Soc., 98, 574 (2015); https://doi.org/10.1111/jace.13316
Z. Zeng, H. Wu, C. Zhou, X. Qin, J. He, C. Ji, X. Deng, R. Gao, C. Fu, W. Cai, G. Chen, Z. Wang and X. Lei, J. Asian Ceram. Soc., 8, 1206 (2020); https://doi.org/10.1080/21870764.2020.1833416
S. Udhayan, R. Udayakumar, R. Sagayaraj and K. Gurusamy, BioNanoSci., 11, 703 (2021); https://doi.org/10.1007/s12668-021-00864-z
A. Prakash, R. Sagayaraj, D. Jayarajan, S. Aravazhi, G. Chandrasekaran and R. Nithya, Asian J. Chem., 34, 2288 (2022); https://doi.org/10.14233/ajchem.2022.23840
D. Jayarajan, R. Sagayaraj, S. Silvan, S. Sebastian, R. Nithya and S. Sujeetha, Chem. Africa, 6, 1875 (2023); https://doi.org/10.1007/s42250-023-00615-5
R. Sagayaraj, T. Dhineshkumar, A. Prakash, S. Aravazhi, D. Jayarajan, G. Chandrasekaran and S. Sebastian, Chem. Phys. Lett., 759, 137944 (2020); https://doi.org/10.1016/j.cplett.2020.137944
O.A. Awoyinka, I.O. Balogun and A.A. Ogunnow, J. Med. Plants Res., 1, 63 (2007).
National Committee for Clinical Laboratory Standards (NCCLS), Performance Standards for Antimicrobial Disc Susceptibility Tests. PA: NCCLS Publications 25 (1993).