Copyright (c) 2023 Rashmi Khulbe
This work is licensed under a Creative Commons Attribution 4.0 International License.
Polyol Synthesis of Nanoparticles: A Decade of Advancements and Insights
Corresponding Author(s) : Rashmi Khulbe
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
This article presents a focused overview of advancements in the field of polyol synthesis of metal, metal oxide nanoparticles and nanocomposites, specifically those reported in the current decade. The aim of this article is to present the pertinent physico-chemical factors associated with nanoparticle synthesis in polyol solutions, highlighting their applications in both biological and industrial domains. The scope of this review article is selective rather than exhaustive, concentrating on noteworthy contributions to polyol nanoparticle synthesis that hold potential for refining synthesis methods. To comprehend the role of polyols in nanoparticle synthesis, an examination of the distinct physical properties of various polyols is crucial. Moreover, understanding the particular functions and mechanisms governing nanoparticle formation is imperative in this context.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Fiévet, S. Ammar-Merah, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J.Y. Piquemal, L. Sicard and G. Viau, Chem. Soc. Rev., 47, 5187 (2018); https://doi.org/10.1039/C7CS00777A
- S. Ammar and F. Fiévet, Nanomaterials, 10, 1217 (2020); https://doi.org/10.3390/nano10061217
- H. Dong, Y.C. Chen and C. Feldmann, Green Chem., 17, 4107 (2015); https://doi.org/10.1039/C5GC00943J
- T. Rice, E. Zannini, E. K. Arendt and A. Coffey, Crit. Rev. Food Sci. Nutr., 60, 2034 (2020); https://doi.org/10.1080/10408398.2019.1625859
- K. Lang, R.J. Sánchez-Leija, R.A. Gross and R.J. Linhardt, Polymers, 12, 2969 (2020); https://doi.org/10.3390/polym12122969
- F. Fiévet and R. Brayner, Nanomaterials: A Danger or a Promise, 1 (2012); https://doi.org/10.1007/978-1-4471-4213-3_1
- F. Fievet, F. Fievet-Vincent, J.-P. Lagier, B. Dumont and M. Figlarz, J. Mater. Chem., 3, 627 (1993); https://doi.org/10.1039/jm9930300627
- F. Fievet, J.P. Lagier and M. Figlarz, MRS Bull., 14, 29 (1989); https://doi.org/10.1557/S0883769400060930
- M. Abbas, M. Nazrul Islam, B. Parvatheeswara Rao, T. Ogawa, M. Takahashi and C.G. Kim, Mater. Lett., 91, 326 (2013); https://doi.org/10.1016/j.matlet.2012.10.019
- T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang and R. Du, Colloids Surf. A Physicochem. Eng. Asp., 366, 197 (2010); https://doi.org/10.1016/j.colsurfa.2010.06.005
- T.M.D. Dang, T.T.T. Le, E.F. Blanc and M.C. Dang, Adv. Nat. Sci: Nanosci. Nanotechnol., 3, 035004 (2012); https://doi.org/10.1088/2043-6262/3/3/035004
- M. Hosni, I. Hinkov, C. Ricolleau, T. Pauporté, S. Farhat and N. Jouini, J. Surf. Eng. Mater. Adv. Technol., 06, 1 (2016); https://doi.org/10.4236/jsemat.2016.61001
- N. Zayyoun, L. Bahmad, L. Laânab and B. Jaber, Appl. Phys., A Mater. Sci. Process., 122, 488 (2016); https://doi.org/10.1007/s00339-016-0024-9
- Y. Zhao, J.J. Zhu, J.-M. Hong, N. Bian and H.Y. Chen, Eur. J. Inorg. Chem., 4072 (2004); https://doi.org/10.1002/ejic.200400258
- J. Zhu, Y. Wang, X. Wang, X. Yang and L. Lu, Powder Technol., 181, 249 (2008); https://doi.org/10.1016/j.powtec.2007.05.008
- T. Sheela, Y.A. Nayaka, R. Viswanatha, S. Basavanna and T.G. Venkatesha, Powder Technol., 217, 163 (2012); https://doi.org/10.1016/j.powtec.2011.10.023
- C. Iacovita, G.F. Stiufiuc, R. Dudric, N. Vedeanu, R. Tetean, R.I. Stiufiuc and C.M. Lucaciu, Magnetochemistry, 6, 23 (2020); https://doi.org/10.3390/magnetochemistry6020023
- F. Fiévet, J.P. Lagier, B. Blin, B. Beaudoin and M. Figlarz, Solid State Ion., 32-33, 198 (1989); https://doi.org/10.1016/0167-2738(89)90222-1
- M. Smuda, J. Ströh, N. Pienack, A. Khadiev, H. Terraschke, M. Ruck and T. Doert, Dalton Trans., 51, 17405 (2022); https://doi.org/10.1039/D2DT02273G
- S. Komarneni, D. Li, B. Newalkar, H. Katsuki and A.S. Bhalla, Langmuir, 18, 5959 (2002); https://doi.org/10.1021/la025741n
- I.L. Simakova and D.Y. Murzin, Adv. Nanomat. Catal. Energy, 99, 99 (2019); https://doi.org/10.1016/B978-0-12-814807-5.00004-8
- G.Y. Qiao, Q. Xu, J. Yin, A. Wang and G. Xu, J. Supercrit. Fluids, 128, 18 (2017); https://doi.org/10.1016/j.supflu.2017.05.004
- B.G. Rao, D. Mukherjee and B.M. Reddy, Nanostruc. for Novel Therapy, 1, 1 (2017); https://doi.org/10.1016/B978-0-323-46142-9.00001-3
- T. Mori and T. Hegmann, J. Nanopart. Res., 18, 295 (2016); https://doi.org/10.1007/s11051-016-3587-7
- H.B. Jeon, P.V. Tsalu and J.W. Ha, Sci. Rep., 9, 13635 (2019); https://doi.org/10.1038/s41598-019-50032-3
- S. Yu, J.A. Hachtel, M.F. Chisholm, S.T. Pantelides, A. Laromaine and A. Roig, Nanoscale, 7, 14039 (2015); https://doi.org/10.1039/C5NR03113C
- K. Gharbi, A. Mezni, V. Collière, K. Philippot, C. Amiens, D.C. Pradines and L.S. Smiri J. Tunisian Chem. Soc., 19 335 (2017).
- N.V. Long, Commun. Phys., 31, 329 (2021); https://doi.org/10.15625/0868-3166/2021/15933
- D.R. Rasmussen, M.F. Nielsen and J. Quinson, Chemistry, 5, 900 (2023); https://doi.org/10.3390/chemistry5020061
- J. Quinson, T.M. Nielsen, M. Escudero-Escribano and K.M.Ø. Jensen, Colloids Surf. A Physicochem. Eng. Asp., 675, 131853 (2023); https://doi.org/10.1016/j.colsurfa.2023.131853
- T.H. Chiang, K. Wu and T.-E. Hsieh, IEEE Trans. Nanotechnol., 13, 116 (2014); https://doi.org/10.1109/TNANO.2013.2294174
- G. Dzido, P. Markowski, A. Malachowska-Jutsz, K. Prusik and A.B. Jarzêbski, J. Nanopart. Res., 17, 27 (2015); https://doi.org/10.1007/s11051-014-2843-y
- Z. Fereshteh, R. Rojaee and A. Sharifnabi, Superlattices Microstruct., 98, 267 (2016); https://doi.org/10.1016/j.spmi.2016.08.034
- Z. Lalegani, S.A.S. Ebrahimi, B. Hamawandi, L. La Spada and M.S. Toprak, Opt. Mater., 108, 110381 (2020); https://doi.org/10.1016/j.optmat.2020.110381
- S. Zeroual, P. Estellé, D. Cabaleiro, B. Vigolo, M. Emo, W. Halim and S. Ouaskit, J. Mol. Liq., 310, 113229 (2020); https://doi.org/10.1016/j.molliq.2020.113229
- M. Pernot, B. Jaspard-vinassa, A. Abelanet, S. Rubin, S. Jeanningros, I. Forfar, L. Cetran, M.H.-Y. Yu, E. Balse, S. Hatem, P. Dufourcq, T. Couffinhal and C. Duplàa, Sci. Rep., 12, 8 (2022); https://doi.org/10.1038/s41598-021-03795-7
- J. Boita, L. Nicolao, M.C.M. Alves and J. Morais, New J. Chem., 41, 14478 (2017); https://doi.org/10.1039/C7NJ03056H
- Y.J. Lee, K. Kim, I.S. Shin and K.S. Shin, J. Nanopart. Res., 22, 8 (2020); https://doi.org/10.1007/s11051-019-4727-7
- V.V. Gande and S. Pushpavanam, J. Flow Chem., 11, 661 (2021); https://doi.org/10.1007/s41981-021-00169-y
- T.D. Bao, N.H. Le and H.H. Lam, Chem. Eng. Trans., 97, 331 (2022); https://doi.org/10.3303/CET2297056
- P. Sankarasubramanian and E.N. Ganesh, Int. J. Composite Constitent Mater., 8, 27 (2022).
- L. Dorjee, R. Gogoi, D. Kamil, R. Kumar and A. Verma, Phytoparasitica, 51, 593 (2023); https://doi.org/10.1007/s12600-023-01060-3
- G. Rajakumar, A.A. Rahuman, K. Velayutham, K. Jeyasubramanian, J. Ramyadevi, A. Marikani, G. Elango, C. Kamaraj, T. Santhoshkumar, S. Marimuthu, A.A. Zahir, A. Bagavan, C. Jayaseelan, A.V. Kirthi, M. Iyappan and C. Siva, Vet. Parasitol., 191, 332 (2013); https://doi.org/10.1016/j.vetpar.2012.08.028
- T. Xie, L. Shi, J. Zhang and D. Zhang, Chem. Commun., 50, 7250 (2014); https://doi.org/10.1039/C4CC01441C
- A. Moumen, M. Fattouhi, K. Abderrafi, M. El Hafidi and S. Ouaskit, J. Cluster Sci., 30, 581 (2019); https://doi.org/10.1007/s10876-019-01517-8
- N.A. Nguyen, J.G. Park and S.H. Kim, Bull. Korean Chem. Soc., 34, 2865 (2013); https://doi.org/10.5012/bkcs.2013.34.10.2865
- N.N. Minh, H.T.N. Quyen and T.T. Xuan, Dig. J. Nanomater. Biostruct., 17, 597 (2022); https://doi.org/10.15251/DJNB.2022.172.597
- D. Kaya, H.H. Isik, I.B. Isik, G. Sigircik, T. Tuken, F. Karadag and A. Ekicibil, Int. J. Hydrogen Energy, 48, 14633 (2023); https://doi.org/10.1016/j.ijhydene.2023.01.049
- C. Rodríguez-Proenza, J. Palomares-Báez, M. Chávez-Rojo, A. García-Ruiz, C. Azanza-Ricardo, A. Santoveña-Uribe, G. Luna-Bárcenas, J. Rodríguez-López and R. Esparza, Materials, 11, 1882 (2018); https://doi.org/10.3390/ma11101882
- A. Higareda, F. Mares, D. Bahena and R. Esparza, ChemCatChem, 15, e202300030 (2023); https://doi.org/10.1002/cctc.202300030
- D. Kaya, I. Demiroglu, I.B. Isik, H.H. Isik, S.K. Çetin, C. Sevik, A. Ekicibil and F. Karadag, Int. J. Hydrogen Energy (2023); https://doi.org/10.1016/j.ijhydene.2023.06.100
- F. Mares-Briones, A. Higareda, J.L. Lopez-Miranda, R. Mendoza-Cruz and R. Esparza, Nanomaterials, 13, 1396 (2023); https://doi.org/10.3390/nano13081396
- Y. Wang, Z. Wang, C. Xu and S. Zhou, J. Phys. Chem. C, 127, 4033 (2023); https://doi.org/10.1021/acs.jpcc.2c07661
- S. Sargazi, M.R. Hajinezhad, A. Rahdar, M. Mukhtar, M.K. Jahromi, M.A. Kashi, S.A. Arani, M. Barani and F. Baino, Appl. Phys., A Mater. Sci. Process., 127, 772 (2021); https://doi.org/10.1007/s00339-021-04917-8
- A.S. Uribe, J.M. Cornejo, D. Bahena, J. Ledesma, R. Pérez and R. Esparza, Electrocatalysis, 11, 536 (2020); https://doi.org/10.1007/s12678-020-00613-y
- S. Bundli, P. Dhak, M. Jensen, A.E. Gunnæs, P.D. Nguyen, H. Fjellvåg and A.O. Sjåstad, J. Alloys Compd., 779, 879 (2019); https://doi.org/10.1016/j.jallcom.2018.11.301
- D. Tongsakul, S. Nishimura and K. Ebitani, ACS Catal., 3, 2199 (2013); https://doi.org/10.1021/cs400458k
- P.C. Karthika, A. Ratnakar, N. Balasubramaniam, P. Sahatiya, K. Teja and A.A. Mohan, Asian J. Chem., 25(Suppl. 1), S381 (2013).
- Y.J. Park, J.-H. Park, J. Chul Ro and S.-J. Suh, Appl. Surf. Sci., 613, 155976 (2023); https://doi.org/10.1016/j.apsusc.2022.155976
- A. Rajesh, S. Vignesh, M. Srinivasan, G. Venkatesh and P. Ramasamy, Ferroelectrics, 599, 16 (2022); https://doi.org/10.1080/00150193.2022.2113636
- N.F. Martinez, G. Franceschin, T. Gaudisson, S.H. Khlifa, S.G. Derouich, N. Yaacoub, J.M. Greneche, N. Menguy, R. Valenzuela and S. Ammar, Sci. Rep., 9, 19468 (2019); https://doi.org/10.1038/s41598-019-55649-y
- N. Muthuswamy, J.L.G. de la Fuente, D.T. Tran, J. Walmsley, M. Tsypkin, S. Raaen, S. Sunde, M. Rønning and D. Chen, Int. J. Hydrogen Energy, 38, 16631 (2013); https://doi.org/10.1016/j.ijhydene.2013.02.056
- N. Hikmah, N.F. Idrus, J. Jai and A. Hadi, IOP Conf. Ser. Earth Environ. Sci., 36, 012050 (2016); https://doi.org/10.1088/1755-1315/36/1/012050
- S. Kheawhom and P. Panyarueng, MRS Proc., 1630, 625 (2014); https://doi.org/10.1557/opl.2014.83
- P. Sapkota, S. Lim and K.F.A. Zinsou, Catalysts, 12, 1369 (2022); https://doi.org/10.3390/catal12111369
- K. Sreekanth and D. Sahu, J. Chem. Pharm. Res., 7, 353 (2015).
- R. Hachani, M. Lowdell, M. Birchall, A. Hervault, D. Mertz, S. Begin-Colin and N.T.K. Thanh, Nanoscale, 8, 3278 (2016); https://doi.org/10.1039/C5NR03867G
- A. Gallo-Cordova, S. Veintemillas-Verdaguer, P. Tartaj, E. Mazarío, M.P. Morales and J.G. Ovejero, Nanomaterials, 11, 1052 (2021); https://doi.org/10.3390/nano11041052
- H. Kim, P.W. Im, C. Lee, H. Hong, W.S. Lee, C.H. Koo, S.Y. Park, H.-J. Im, S.H. Paek and Y. Piao, RSC Adv., 13, 2803 (2023); https://doi.org/10.1039/D2RA07190H
- O.R. Vasile, I. Serdaru, E. Andronescu, R. Truscã, V.A. Surdu, O. Oprea, A. Ilie and B.S. Vasile, C. R. Chim., 18, 1335 (2015); https://doi.org/10.1016/j.crci.2015.08.005
- C. Byl, A. Gloter, J.P. Baltaze, D. Bérardan and N. Dragoe, J. Sol-Gel Sci. Technol., 83, 296 (2017); https://doi.org/10.1007/s10971-017-4403-2
- T.E.P. Alves, C. Kolodziej, C. Burda and A. Franco Jr., Mater. Des., 146, 125 (2018); https://doi.org/10.1016/j.matdes.2018.03.013
- S. Soren, S. Kumar, S. Mishra, P.K. Jena, S.K. Verma and P. Parhi, Microb. Pathog., 119, 145 (2018); https://doi.org/10.1016/j.micpath.2018.03.048
- P.P. Mahamuni, P.M. Patil, M.J. Dhanavade, M.V. Badiger, P.G. Shadija, A.C. Lokhande and R.A. Bohara, Biochem. Biophys. Rep., 17, 71 (2019); https://doi.org/10.1016/j.bbrep.2018.11.007
- R. Rathore and N. Kaurav, Mater. Today Proc., 54, 624 (2022); https://doi.org/10.1016/j.matpr.2021.10.207
- A. Zakiyah, R. Subagyo, Y. Kusumawati and H. Juwono, AIP Conf. Proc., 2553, 020030 (2022); https://doi.org/10.1063/5.0105816
- P. Walunj, A. Roy, V.R. Jadhav, P. Athare, A. Dhaygude, J. Aher, J.S. Algethami, D. Lokhande, M.S. Alqahtani, A.M. Bhagare, S. Alghamdi, L.B. Eltayeb, I.S. Al-Moraya, K.K. Yadav, Y. Ahn and B.-H. Jeon, Front. Bioeng. Biotechnol., 11, 1177981 (2023); https://doi.org/10.3389/fbioe.2023.1177981
- M. Fekadu, D. Zeleke, B. Abdi, A. Guttula, R. Eswaramoorthy and Y. Melaku, BMC Chem., 16, 1 (2022); https://doi.org/10.1186/s13065-022-00795-0
- S.U. Sandhya and S.A. Nityananda, Nanomat. Nanotechnol., 3, 5 (2013); https://doi.org/10.5772/56626
- O.L. Evdokimova, M. Belousova, A.V. Evdokimova, T.V. Kusova, A.E. Baranchikov, K.S. Antonets, A.A. Nizhnikov and A.V. Agafonov, Cellulose, 28, 2931 (2021); https://doi.org/10.1007/s10570-021-03689-x
- L.A. Dahonog, M.S.D.D. Vega and M.D.L. Balela, J. Phys. Conf. Ser., 1191, 012043 (2019); https://doi.org/10.1088/1742-6596/1191/1/012043
- S. Maturost, S. Themsirimongkon, S. Saipanya, N. Pongpichayakul, J. Jakmunee, L. Fang and P. Waenkaew, Int. J. Hydrogen Energy, 47, 5585 (2022); https://doi.org/10.1016/j.ijhydene.2021.11.199
- Y.R. Baste, V.R. Jadhav, A. Roy, S. Alghamdi, M. Abbas, J.S. Algethami, M. Almehmadi, M. Allahyani, D. Verma, K.K. Yadav, B.H. Jeon and H.K. Park, Catalysts, 13, 1143 (2023); https://doi.org/10.3390/catal13071143
- J.A. Adekoya, E.O. Dare, M.A. Mesubi, A.A. Nejo, H.C. Swart and N. Revaprasadu, Results Phys., 4, 12 (2014); https://doi.org/10.1016/j.rinp.2014.02.002
- R. Shamsi, M. Mahyari and M. Koosha, J. Appl. Polym. Sci., 134, 44567 (2016); https://doi.org/10.1002/app.44567
- T. Tarachand, S. Hussain, N.P. Lalla, Y.-K. Kuo, A. Lakhani, V.G. Sathe, U. Deshpande and G.S. Okram, Phys. Chem. Chem. Phys., 20, 5926 (2018); https://doi.org/10.1039/C7CP07986A
- I.M. Factori, J.M. Amaral, P.H. Camani, D.S. Rosa, B.A. Lima, M. Brocchi, E.R. da Silva and J.S. Souza, ACS Appl. Nano Mater., 4, 7371 (2021); https://doi.org/10.1021/acsanm.1c01334
- J.A. Donadelli, M. Belen, F. Aparicio and M.M. Virginia Moreno, J. Nanopart. Res., 24, 58 (2022); https://doi.org/10.1007/s11051-022-05446-y
- G. Birant, I.M. Ozturk, D. Doganay, H.E. Unalan and A. Bek, ACS Appl. Nanomater., 3, 12231 (2020) https://doi.org/10.1021/acsanm.0c02694
- K. Wang, Y. Liu, J.C. Wang and X. Liang, ChemNanoMat, 9, e202300294 (2023); https://doi.org/10.1002/cnma.202300294
- T. Dang-Bao, I. Favier and M. Gomez, eds.: K. Philippot and A. Roucoux, Metal Nanoparticles in Polyols: Bottom-up and Top-down Syntheses and Catalytic Applications; In: Nanoparticles in Catalysis: Advances in Synthesis and Applications, Wiley, Chap. 5, pp. 99-122 (2021).
- Y. Shi and J. Fang, J. Phys. Chem. C, 126, 19866 (2022); https://doi.org/10.1021/acs.jpcc.2c05632
- S. Farhat, N. Ouar, M. Hosni, I. Hinkov, S. Mercone, F. Schoenstein and N.N. Jouini, J. Mater. Sci. Chem. Eng., 2, 1 (2014); https://doi.org/10.4236/msce.2014.29001
- F. Li, G. Zhang and H. Abe, Open Ceram., 9, 100223 (2022); https://doi.org/10.1016/j.oceram.2022.100223
- F. Shiba, U. Mameuda, S. Tatejima and Y. Okawa, RSC Adv., 9, 34589 (2019); https://doi.org/10.1039/C9RA07080J
- T.K. Lahane, J. Agrawal and V. Singh, Mater. Today Proc., 59, 257 (2022); https://doi.org/10.1016/j.matpr.2021.11.108
- J. Tripathi, G.S. Chandrawat, J. Singh, S.N. Tripathi and A. Sharma, J. Alloys Compd., 861, 157977 (2021); https://doi.org/10.1016/j.jallcom.2020.157977
- Z. Huang, J. Xu, Q. Zhang, G. Liu, T. Wu, T. Lin and P. He, Mater. Today Chem., 30, 101569 (2023); https://doi.org/10.1016/j.mtchem.2023.101569
- M.S. Lee, Y.J. Choi, S.-J. Bak, M. Son, J. Shin and J.Y. Lee, Nanomaterials, 12, 3644 (2022); https://doi.org/10.3390/nano12203644
- S. Kaabipour and S. Hemmati, Colloids Surf. A Physicochem. Eng. Asp., 659, 130806 (2023); https://doi.org/10.1016/j.colsurfa.2022.130806
- S. Yala and N. Petchsang, IOP Conf. Ser.: Mater. Sci. Eng., 1234, 012034 (2022); https://doi.org/10.1088/1757-899X/1234/1/012034
- M. Parente, M. van Helvert, R.F. Hamans, R. Verbroekken, R. Sinha, A. Bieberle-Hütter and A. Baldi, Nano Lett., 20, 5759 (2020); https://doi.org/10.1021/acs.nanolett.0c01565
- A.R. Akbarzadeh, I. Mesgarzadeh and R.E. Malekshah, Chem. Zvesti, 76, 5761 (2022); https://doi.org/10.1007/s11696-022-02272-3
- Z. Zhu, X. Wang, H. Yu, W. Zhou, Y. Wang, J. Han and F. Guo, Cryst. Growth Des., 23, 1455 (2023); https://doi.org/10.1021/acs.cgd.2c01031
- Z. Wu, D. Xiao, J. Lee, P. Ren, M. Song and D. Li, J. Cryst. Growth, 521, 34 (2019); https://doi.org/10.1016/j.jcrysgro.2019.05.028
- S. Liu, B. Yu, S. Wang, Y. Shen and H. Cong, Adv. Colloid Interface Sci., 281, 102165 (2020); https://doi.org/10.1016/j.cis.2020.102165
- G. Zhang, Q. Zhang, T. Cheng, X. Zhan and F. Chen, Langmuir, 34, 4052 (2018); https://doi.org/10.1021/acs.langmuir.8b00286
- N. Akkurt, C.L. Altan and M.F. Sarac, J. Supercond. Nov. Magn., 35, 615 (2022); https://doi.org/10.1007/s10948-021-06132-1
- M.F. Variava, T.L. Church, A.T. Harris and A.I. Minett, J. Mater. Chem. A Mater. Energy Sustain., 1, 8509 (2013); https://doi.org/10.1039/c3ta11319a
- K.J. Carroll, J.U. Reveles, M.D. Shultz, S.N. Khanna and E.E. Carpenter, J. Phys. Chem. C, 115, 2656 (2011); https://doi.org/10.1021/jp1104196
References
F. Fiévet, S. Ammar-Merah, R. Brayner, F. Chau, M. Giraud, F. Mammeri, J. Peron, J.Y. Piquemal, L. Sicard and G. Viau, Chem. Soc. Rev., 47, 5187 (2018); https://doi.org/10.1039/C7CS00777A
S. Ammar and F. Fiévet, Nanomaterials, 10, 1217 (2020); https://doi.org/10.3390/nano10061217
H. Dong, Y.C. Chen and C. Feldmann, Green Chem., 17, 4107 (2015); https://doi.org/10.1039/C5GC00943J
T. Rice, E. Zannini, E. K. Arendt and A. Coffey, Crit. Rev. Food Sci. Nutr., 60, 2034 (2020); https://doi.org/10.1080/10408398.2019.1625859
K. Lang, R.J. Sánchez-Leija, R.A. Gross and R.J. Linhardt, Polymers, 12, 2969 (2020); https://doi.org/10.3390/polym12122969
F. Fiévet and R. Brayner, Nanomaterials: A Danger or a Promise, 1 (2012); https://doi.org/10.1007/978-1-4471-4213-3_1
F. Fievet, F. Fievet-Vincent, J.-P. Lagier, B. Dumont and M. Figlarz, J. Mater. Chem., 3, 627 (1993); https://doi.org/10.1039/jm9930300627
F. Fievet, J.P. Lagier and M. Figlarz, MRS Bull., 14, 29 (1989); https://doi.org/10.1557/S0883769400060930
M. Abbas, M. Nazrul Islam, B. Parvatheeswara Rao, T. Ogawa, M. Takahashi and C.G. Kim, Mater. Lett., 91, 326 (2013); https://doi.org/10.1016/j.matlet.2012.10.019
T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang and R. Du, Colloids Surf. A Physicochem. Eng. Asp., 366, 197 (2010); https://doi.org/10.1016/j.colsurfa.2010.06.005
T.M.D. Dang, T.T.T. Le, E.F. Blanc and M.C. Dang, Adv. Nat. Sci: Nanosci. Nanotechnol., 3, 035004 (2012); https://doi.org/10.1088/2043-6262/3/3/035004
M. Hosni, I. Hinkov, C. Ricolleau, T. Pauporté, S. Farhat and N. Jouini, J. Surf. Eng. Mater. Adv. Technol., 06, 1 (2016); https://doi.org/10.4236/jsemat.2016.61001
N. Zayyoun, L. Bahmad, L. Laânab and B. Jaber, Appl. Phys., A Mater. Sci. Process., 122, 488 (2016); https://doi.org/10.1007/s00339-016-0024-9
Y. Zhao, J.J. Zhu, J.-M. Hong, N. Bian and H.Y. Chen, Eur. J. Inorg. Chem., 4072 (2004); https://doi.org/10.1002/ejic.200400258
J. Zhu, Y. Wang, X. Wang, X. Yang and L. Lu, Powder Technol., 181, 249 (2008); https://doi.org/10.1016/j.powtec.2007.05.008
T. Sheela, Y.A. Nayaka, R. Viswanatha, S. Basavanna and T.G. Venkatesha, Powder Technol., 217, 163 (2012); https://doi.org/10.1016/j.powtec.2011.10.023
C. Iacovita, G.F. Stiufiuc, R. Dudric, N. Vedeanu, R. Tetean, R.I. Stiufiuc and C.M. Lucaciu, Magnetochemistry, 6, 23 (2020); https://doi.org/10.3390/magnetochemistry6020023
F. Fiévet, J.P. Lagier, B. Blin, B. Beaudoin and M. Figlarz, Solid State Ion., 32-33, 198 (1989); https://doi.org/10.1016/0167-2738(89)90222-1
M. Smuda, J. Ströh, N. Pienack, A. Khadiev, H. Terraschke, M. Ruck and T. Doert, Dalton Trans., 51, 17405 (2022); https://doi.org/10.1039/D2DT02273G
S. Komarneni, D. Li, B. Newalkar, H. Katsuki and A.S. Bhalla, Langmuir, 18, 5959 (2002); https://doi.org/10.1021/la025741n
I.L. Simakova and D.Y. Murzin, Adv. Nanomat. Catal. Energy, 99, 99 (2019); https://doi.org/10.1016/B978-0-12-814807-5.00004-8
G.Y. Qiao, Q. Xu, J. Yin, A. Wang and G. Xu, J. Supercrit. Fluids, 128, 18 (2017); https://doi.org/10.1016/j.supflu.2017.05.004
B.G. Rao, D. Mukherjee and B.M. Reddy, Nanostruc. for Novel Therapy, 1, 1 (2017); https://doi.org/10.1016/B978-0-323-46142-9.00001-3
T. Mori and T. Hegmann, J. Nanopart. Res., 18, 295 (2016); https://doi.org/10.1007/s11051-016-3587-7
H.B. Jeon, P.V. Tsalu and J.W. Ha, Sci. Rep., 9, 13635 (2019); https://doi.org/10.1038/s41598-019-50032-3
S. Yu, J.A. Hachtel, M.F. Chisholm, S.T. Pantelides, A. Laromaine and A. Roig, Nanoscale, 7, 14039 (2015); https://doi.org/10.1039/C5NR03113C
K. Gharbi, A. Mezni, V. Collière, K. Philippot, C. Amiens, D.C. Pradines and L.S. Smiri J. Tunisian Chem. Soc., 19 335 (2017).
N.V. Long, Commun. Phys., 31, 329 (2021); https://doi.org/10.15625/0868-3166/2021/15933
D.R. Rasmussen, M.F. Nielsen and J. Quinson, Chemistry, 5, 900 (2023); https://doi.org/10.3390/chemistry5020061
J. Quinson, T.M. Nielsen, M. Escudero-Escribano and K.M.Ø. Jensen, Colloids Surf. A Physicochem. Eng. Asp., 675, 131853 (2023); https://doi.org/10.1016/j.colsurfa.2023.131853
T.H. Chiang, K. Wu and T.-E. Hsieh, IEEE Trans. Nanotechnol., 13, 116 (2014); https://doi.org/10.1109/TNANO.2013.2294174
G. Dzido, P. Markowski, A. Malachowska-Jutsz, K. Prusik and A.B. Jarzêbski, J. Nanopart. Res., 17, 27 (2015); https://doi.org/10.1007/s11051-014-2843-y
Z. Fereshteh, R. Rojaee and A. Sharifnabi, Superlattices Microstruct., 98, 267 (2016); https://doi.org/10.1016/j.spmi.2016.08.034
Z. Lalegani, S.A.S. Ebrahimi, B. Hamawandi, L. La Spada and M.S. Toprak, Opt. Mater., 108, 110381 (2020); https://doi.org/10.1016/j.optmat.2020.110381
S. Zeroual, P. Estellé, D. Cabaleiro, B. Vigolo, M. Emo, W. Halim and S. Ouaskit, J. Mol. Liq., 310, 113229 (2020); https://doi.org/10.1016/j.molliq.2020.113229
M. Pernot, B. Jaspard-vinassa, A. Abelanet, S. Rubin, S. Jeanningros, I. Forfar, L. Cetran, M.H.-Y. Yu, E. Balse, S. Hatem, P. Dufourcq, T. Couffinhal and C. Duplàa, Sci. Rep., 12, 8 (2022); https://doi.org/10.1038/s41598-021-03795-7
J. Boita, L. Nicolao, M.C.M. Alves and J. Morais, New J. Chem., 41, 14478 (2017); https://doi.org/10.1039/C7NJ03056H
Y.J. Lee, K. Kim, I.S. Shin and K.S. Shin, J. Nanopart. Res., 22, 8 (2020); https://doi.org/10.1007/s11051-019-4727-7
V.V. Gande and S. Pushpavanam, J. Flow Chem., 11, 661 (2021); https://doi.org/10.1007/s41981-021-00169-y
T.D. Bao, N.H. Le and H.H. Lam, Chem. Eng. Trans., 97, 331 (2022); https://doi.org/10.3303/CET2297056
P. Sankarasubramanian and E.N. Ganesh, Int. J. Composite Constitent Mater., 8, 27 (2022).
L. Dorjee, R. Gogoi, D. Kamil, R. Kumar and A. Verma, Phytoparasitica, 51, 593 (2023); https://doi.org/10.1007/s12600-023-01060-3
G. Rajakumar, A.A. Rahuman, K. Velayutham, K. Jeyasubramanian, J. Ramyadevi, A. Marikani, G. Elango, C. Kamaraj, T. Santhoshkumar, S. Marimuthu, A.A. Zahir, A. Bagavan, C. Jayaseelan, A.V. Kirthi, M. Iyappan and C. Siva, Vet. Parasitol., 191, 332 (2013); https://doi.org/10.1016/j.vetpar.2012.08.028
T. Xie, L. Shi, J. Zhang and D. Zhang, Chem. Commun., 50, 7250 (2014); https://doi.org/10.1039/C4CC01441C
A. Moumen, M. Fattouhi, K. Abderrafi, M. El Hafidi and S. Ouaskit, J. Cluster Sci., 30, 581 (2019); https://doi.org/10.1007/s10876-019-01517-8
N.A. Nguyen, J.G. Park and S.H. Kim, Bull. Korean Chem. Soc., 34, 2865 (2013); https://doi.org/10.5012/bkcs.2013.34.10.2865
N.N. Minh, H.T.N. Quyen and T.T. Xuan, Dig. J. Nanomater. Biostruct., 17, 597 (2022); https://doi.org/10.15251/DJNB.2022.172.597
D. Kaya, H.H. Isik, I.B. Isik, G. Sigircik, T. Tuken, F. Karadag and A. Ekicibil, Int. J. Hydrogen Energy, 48, 14633 (2023); https://doi.org/10.1016/j.ijhydene.2023.01.049
C. Rodríguez-Proenza, J. Palomares-Báez, M. Chávez-Rojo, A. García-Ruiz, C. Azanza-Ricardo, A. Santoveña-Uribe, G. Luna-Bárcenas, J. Rodríguez-López and R. Esparza, Materials, 11, 1882 (2018); https://doi.org/10.3390/ma11101882
A. Higareda, F. Mares, D. Bahena and R. Esparza, ChemCatChem, 15, e202300030 (2023); https://doi.org/10.1002/cctc.202300030
D. Kaya, I. Demiroglu, I.B. Isik, H.H. Isik, S.K. Çetin, C. Sevik, A. Ekicibil and F. Karadag, Int. J. Hydrogen Energy (2023); https://doi.org/10.1016/j.ijhydene.2023.06.100
F. Mares-Briones, A. Higareda, J.L. Lopez-Miranda, R. Mendoza-Cruz and R. Esparza, Nanomaterials, 13, 1396 (2023); https://doi.org/10.3390/nano13081396
Y. Wang, Z. Wang, C. Xu and S. Zhou, J. Phys. Chem. C, 127, 4033 (2023); https://doi.org/10.1021/acs.jpcc.2c07661
S. Sargazi, M.R. Hajinezhad, A. Rahdar, M. Mukhtar, M.K. Jahromi, M.A. Kashi, S.A. Arani, M. Barani and F. Baino, Appl. Phys., A Mater. Sci. Process., 127, 772 (2021); https://doi.org/10.1007/s00339-021-04917-8
A.S. Uribe, J.M. Cornejo, D. Bahena, J. Ledesma, R. Pérez and R. Esparza, Electrocatalysis, 11, 536 (2020); https://doi.org/10.1007/s12678-020-00613-y
S. Bundli, P. Dhak, M. Jensen, A.E. Gunnæs, P.D. Nguyen, H. Fjellvåg and A.O. Sjåstad, J. Alloys Compd., 779, 879 (2019); https://doi.org/10.1016/j.jallcom.2018.11.301
D. Tongsakul, S. Nishimura and K. Ebitani, ACS Catal., 3, 2199 (2013); https://doi.org/10.1021/cs400458k
P.C. Karthika, A. Ratnakar, N. Balasubramaniam, P. Sahatiya, K. Teja and A.A. Mohan, Asian J. Chem., 25(Suppl. 1), S381 (2013).
Y.J. Park, J.-H. Park, J. Chul Ro and S.-J. Suh, Appl. Surf. Sci., 613, 155976 (2023); https://doi.org/10.1016/j.apsusc.2022.155976
A. Rajesh, S. Vignesh, M. Srinivasan, G. Venkatesh and P. Ramasamy, Ferroelectrics, 599, 16 (2022); https://doi.org/10.1080/00150193.2022.2113636
N.F. Martinez, G. Franceschin, T. Gaudisson, S.H. Khlifa, S.G. Derouich, N. Yaacoub, J.M. Greneche, N. Menguy, R. Valenzuela and S. Ammar, Sci. Rep., 9, 19468 (2019); https://doi.org/10.1038/s41598-019-55649-y
N. Muthuswamy, J.L.G. de la Fuente, D.T. Tran, J. Walmsley, M. Tsypkin, S. Raaen, S. Sunde, M. Rønning and D. Chen, Int. J. Hydrogen Energy, 38, 16631 (2013); https://doi.org/10.1016/j.ijhydene.2013.02.056
N. Hikmah, N.F. Idrus, J. Jai and A. Hadi, IOP Conf. Ser. Earth Environ. Sci., 36, 012050 (2016); https://doi.org/10.1088/1755-1315/36/1/012050
S. Kheawhom and P. Panyarueng, MRS Proc., 1630, 625 (2014); https://doi.org/10.1557/opl.2014.83
P. Sapkota, S. Lim and K.F.A. Zinsou, Catalysts, 12, 1369 (2022); https://doi.org/10.3390/catal12111369
K. Sreekanth and D. Sahu, J. Chem. Pharm. Res., 7, 353 (2015).
R. Hachani, M. Lowdell, M. Birchall, A. Hervault, D. Mertz, S. Begin-Colin and N.T.K. Thanh, Nanoscale, 8, 3278 (2016); https://doi.org/10.1039/C5NR03867G
A. Gallo-Cordova, S. Veintemillas-Verdaguer, P. Tartaj, E. Mazarío, M.P. Morales and J.G. Ovejero, Nanomaterials, 11, 1052 (2021); https://doi.org/10.3390/nano11041052
H. Kim, P.W. Im, C. Lee, H. Hong, W.S. Lee, C.H. Koo, S.Y. Park, H.-J. Im, S.H. Paek and Y. Piao, RSC Adv., 13, 2803 (2023); https://doi.org/10.1039/D2RA07190H
O.R. Vasile, I. Serdaru, E. Andronescu, R. Truscã, V.A. Surdu, O. Oprea, A. Ilie and B.S. Vasile, C. R. Chim., 18, 1335 (2015); https://doi.org/10.1016/j.crci.2015.08.005
C. Byl, A. Gloter, J.P. Baltaze, D. Bérardan and N. Dragoe, J. Sol-Gel Sci. Technol., 83, 296 (2017); https://doi.org/10.1007/s10971-017-4403-2
T.E.P. Alves, C. Kolodziej, C. Burda and A. Franco Jr., Mater. Des., 146, 125 (2018); https://doi.org/10.1016/j.matdes.2018.03.013
S. Soren, S. Kumar, S. Mishra, P.K. Jena, S.K. Verma and P. Parhi, Microb. Pathog., 119, 145 (2018); https://doi.org/10.1016/j.micpath.2018.03.048
P.P. Mahamuni, P.M. Patil, M.J. Dhanavade, M.V. Badiger, P.G. Shadija, A.C. Lokhande and R.A. Bohara, Biochem. Biophys. Rep., 17, 71 (2019); https://doi.org/10.1016/j.bbrep.2018.11.007
R. Rathore and N. Kaurav, Mater. Today Proc., 54, 624 (2022); https://doi.org/10.1016/j.matpr.2021.10.207
A. Zakiyah, R. Subagyo, Y. Kusumawati and H. Juwono, AIP Conf. Proc., 2553, 020030 (2022); https://doi.org/10.1063/5.0105816
P. Walunj, A. Roy, V.R. Jadhav, P. Athare, A. Dhaygude, J. Aher, J.S. Algethami, D. Lokhande, M.S. Alqahtani, A.M. Bhagare, S. Alghamdi, L.B. Eltayeb, I.S. Al-Moraya, K.K. Yadav, Y. Ahn and B.-H. Jeon, Front. Bioeng. Biotechnol., 11, 1177981 (2023); https://doi.org/10.3389/fbioe.2023.1177981
M. Fekadu, D. Zeleke, B. Abdi, A. Guttula, R. Eswaramoorthy and Y. Melaku, BMC Chem., 16, 1 (2022); https://doi.org/10.1186/s13065-022-00795-0
S.U. Sandhya and S.A. Nityananda, Nanomat. Nanotechnol., 3, 5 (2013); https://doi.org/10.5772/56626
O.L. Evdokimova, M. Belousova, A.V. Evdokimova, T.V. Kusova, A.E. Baranchikov, K.S. Antonets, A.A. Nizhnikov and A.V. Agafonov, Cellulose, 28, 2931 (2021); https://doi.org/10.1007/s10570-021-03689-x
L.A. Dahonog, M.S.D.D. Vega and M.D.L. Balela, J. Phys. Conf. Ser., 1191, 012043 (2019); https://doi.org/10.1088/1742-6596/1191/1/012043
S. Maturost, S. Themsirimongkon, S. Saipanya, N. Pongpichayakul, J. Jakmunee, L. Fang and P. Waenkaew, Int. J. Hydrogen Energy, 47, 5585 (2022); https://doi.org/10.1016/j.ijhydene.2021.11.199
Y.R. Baste, V.R. Jadhav, A. Roy, S. Alghamdi, M. Abbas, J.S. Algethami, M. Almehmadi, M. Allahyani, D. Verma, K.K. Yadav, B.H. Jeon and H.K. Park, Catalysts, 13, 1143 (2023); https://doi.org/10.3390/catal13071143
J.A. Adekoya, E.O. Dare, M.A. Mesubi, A.A. Nejo, H.C. Swart and N. Revaprasadu, Results Phys., 4, 12 (2014); https://doi.org/10.1016/j.rinp.2014.02.002
R. Shamsi, M. Mahyari and M. Koosha, J. Appl. Polym. Sci., 134, 44567 (2016); https://doi.org/10.1002/app.44567
T. Tarachand, S. Hussain, N.P. Lalla, Y.-K. Kuo, A. Lakhani, V.G. Sathe, U. Deshpande and G.S. Okram, Phys. Chem. Chem. Phys., 20, 5926 (2018); https://doi.org/10.1039/C7CP07986A
I.M. Factori, J.M. Amaral, P.H. Camani, D.S. Rosa, B.A. Lima, M. Brocchi, E.R. da Silva and J.S. Souza, ACS Appl. Nano Mater., 4, 7371 (2021); https://doi.org/10.1021/acsanm.1c01334
J.A. Donadelli, M. Belen, F. Aparicio and M.M. Virginia Moreno, J. Nanopart. Res., 24, 58 (2022); https://doi.org/10.1007/s11051-022-05446-y
G. Birant, I.M. Ozturk, D. Doganay, H.E. Unalan and A. Bek, ACS Appl. Nanomater., 3, 12231 (2020) https://doi.org/10.1021/acsanm.0c02694
K. Wang, Y. Liu, J.C. Wang and X. Liang, ChemNanoMat, 9, e202300294 (2023); https://doi.org/10.1002/cnma.202300294
T. Dang-Bao, I. Favier and M. Gomez, eds.: K. Philippot and A. Roucoux, Metal Nanoparticles in Polyols: Bottom-up and Top-down Syntheses and Catalytic Applications; In: Nanoparticles in Catalysis: Advances in Synthesis and Applications, Wiley, Chap. 5, pp. 99-122 (2021).
Y. Shi and J. Fang, J. Phys. Chem. C, 126, 19866 (2022); https://doi.org/10.1021/acs.jpcc.2c05632
S. Farhat, N. Ouar, M. Hosni, I. Hinkov, S. Mercone, F. Schoenstein and N.N. Jouini, J. Mater. Sci. Chem. Eng., 2, 1 (2014); https://doi.org/10.4236/msce.2014.29001
F. Li, G. Zhang and H. Abe, Open Ceram., 9, 100223 (2022); https://doi.org/10.1016/j.oceram.2022.100223
F. Shiba, U. Mameuda, S. Tatejima and Y. Okawa, RSC Adv., 9, 34589 (2019); https://doi.org/10.1039/C9RA07080J
T.K. Lahane, J. Agrawal and V. Singh, Mater. Today Proc., 59, 257 (2022); https://doi.org/10.1016/j.matpr.2021.11.108
J. Tripathi, G.S. Chandrawat, J. Singh, S.N. Tripathi and A. Sharma, J. Alloys Compd., 861, 157977 (2021); https://doi.org/10.1016/j.jallcom.2020.157977
Z. Huang, J. Xu, Q. Zhang, G. Liu, T. Wu, T. Lin and P. He, Mater. Today Chem., 30, 101569 (2023); https://doi.org/10.1016/j.mtchem.2023.101569
M.S. Lee, Y.J. Choi, S.-J. Bak, M. Son, J. Shin and J.Y. Lee, Nanomaterials, 12, 3644 (2022); https://doi.org/10.3390/nano12203644
S. Kaabipour and S. Hemmati, Colloids Surf. A Physicochem. Eng. Asp., 659, 130806 (2023); https://doi.org/10.1016/j.colsurfa.2022.130806
S. Yala and N. Petchsang, IOP Conf. Ser.: Mater. Sci. Eng., 1234, 012034 (2022); https://doi.org/10.1088/1757-899X/1234/1/012034
M. Parente, M. van Helvert, R.F. Hamans, R. Verbroekken, R. Sinha, A. Bieberle-Hütter and A. Baldi, Nano Lett., 20, 5759 (2020); https://doi.org/10.1021/acs.nanolett.0c01565
A.R. Akbarzadeh, I. Mesgarzadeh and R.E. Malekshah, Chem. Zvesti, 76, 5761 (2022); https://doi.org/10.1007/s11696-022-02272-3
Z. Zhu, X. Wang, H. Yu, W. Zhou, Y. Wang, J. Han and F. Guo, Cryst. Growth Des., 23, 1455 (2023); https://doi.org/10.1021/acs.cgd.2c01031
Z. Wu, D. Xiao, J. Lee, P. Ren, M. Song and D. Li, J. Cryst. Growth, 521, 34 (2019); https://doi.org/10.1016/j.jcrysgro.2019.05.028
S. Liu, B. Yu, S. Wang, Y. Shen and H. Cong, Adv. Colloid Interface Sci., 281, 102165 (2020); https://doi.org/10.1016/j.cis.2020.102165
G. Zhang, Q. Zhang, T. Cheng, X. Zhan and F. Chen, Langmuir, 34, 4052 (2018); https://doi.org/10.1021/acs.langmuir.8b00286
N. Akkurt, C.L. Altan and M.F. Sarac, J. Supercond. Nov. Magn., 35, 615 (2022); https://doi.org/10.1007/s10948-021-06132-1
M.F. Variava, T.L. Church, A.T. Harris and A.I. Minett, J. Mater. Chem. A Mater. Energy Sustain., 1, 8509 (2013); https://doi.org/10.1039/c3ta11319a
K.J. Carroll, J.U. Reveles, M.D. Shultz, S.N. Khanna and E.E. Carpenter, J. Phys. Chem. C, 115, 2656 (2011); https://doi.org/10.1021/jp1104196