Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Monoazaphenoxazine Derivatives via Buchwald-Hartwig Tandem Amination Protocol
Corresponding Author(s) : Florence Uchenna Eze
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
Synthesis of monoazaphenoxazine viz., 3-chloro-1-azaphenoxazine (7) and some of its functionalized anilino derivatives (7a-e) via Buchwald-Hartwig amination methodology is reported. The intermediate 3-chloro-1-azaphenoxazine (7), was obtained by base-catalyzed condensation reaction between 2-aminophenol (8) and 2,3,5-trichloropyridine (9). Further reaction of compound 7 with various substituted anilines (10) via Tandem catalysis gave the anilino derivatives (7a-e). Structures of the synthesized compounds were assigned by spectroscopic methods.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.J.J. Müller, Tetrahedron Lett., 40, 6563 (1999); doi:10.1016/S0040-4039(99)01402-1.
- M. Ionescu, A.R. Katritzky and A.J. Boulton, Advances in Heterocyclic Chemistry, Academic Press Inc. New York, vol. 8, p. 83 (1967).
- U.C. Okoro, F. Okpunor and R.O. Ugwoke, Int. J. Chem., 19, 107 (2009).
- T. Shimamoto, A. Tomado, R. Ishida and K. Ohyashiki, Am. Assoc. Cancer Res., 7, 704 (2001).
- J.K. Horton, K.N. Thimmaiah, F.C. Harwood, J.F. Kuttesch and P.J. Houghton, Mol. Pharmocol. Abstr., 44, 552 (1993).
- B. Boothroyd and E.R. Clark, J. Chem. Soc., 1449 (1953); doi:10.1039/JR9530001499.
- T.U.S. Chu Daniel, Chem. Abstr., 104, 109663K (1986).
- H. Brockman, Chemistry of Natural Products, Burterworths Publishers, London, pp. 405 (1961).
- S. Gao, T. Takano, H.J. Sadak, C. Noda, N. Hori-Tamura, A. Tomoda and H. Yamamura, Br. J. Pharmacol., 137, 749 (2002); doi:10.1038/sj.bjp.0704939.
- M. Gordon, P.N. Craig and C.L. Zirkle, in ed.: R.F. Gould, Molecular Modification in Drug Design, American Chemical Society, pp. 140-147 (1964).
- C.O. Okafor, Heterocycl. Chem., 7, 391 (1977); doi:10.3987/S-1977-01-0391.
- C.O. Okafor, Phosphorus Sulfur Silicon Rel. Elem., 4, 79 (1978); doi:10.1080/03086647808079968.
- A.H. Gulbenk, D.J. Horne and H. Johnson, Chem. Abstr., 77, 4850 (1972).
- B.P. Fors, P. Krattiger, E. Strieter and S.L. Buchwald, Org. Lett., 10, 3505 (2008); doi:10.1021/ol801285g.
References
T.J.J. Müller, Tetrahedron Lett., 40, 6563 (1999); doi:10.1016/S0040-4039(99)01402-1.
M. Ionescu, A.R. Katritzky and A.J. Boulton, Advances in Heterocyclic Chemistry, Academic Press Inc. New York, vol. 8, p. 83 (1967).
U.C. Okoro, F. Okpunor and R.O. Ugwoke, Int. J. Chem., 19, 107 (2009).
T. Shimamoto, A. Tomado, R. Ishida and K. Ohyashiki, Am. Assoc. Cancer Res., 7, 704 (2001).
J.K. Horton, K.N. Thimmaiah, F.C. Harwood, J.F. Kuttesch and P.J. Houghton, Mol. Pharmocol. Abstr., 44, 552 (1993).
B. Boothroyd and E.R. Clark, J. Chem. Soc., 1449 (1953); doi:10.1039/JR9530001499.
T.U.S. Chu Daniel, Chem. Abstr., 104, 109663K (1986).
H. Brockman, Chemistry of Natural Products, Burterworths Publishers, London, pp. 405 (1961).
S. Gao, T. Takano, H.J. Sadak, C. Noda, N. Hori-Tamura, A. Tomoda and H. Yamamura, Br. J. Pharmacol., 137, 749 (2002); doi:10.1038/sj.bjp.0704939.
M. Gordon, P.N. Craig and C.L. Zirkle, in ed.: R.F. Gould, Molecular Modification in Drug Design, American Chemical Society, pp. 140-147 (1964).
C.O. Okafor, Heterocycl. Chem., 7, 391 (1977); doi:10.3987/S-1977-01-0391.
C.O. Okafor, Phosphorus Sulfur Silicon Rel. Elem., 4, 79 (1978); doi:10.1080/03086647808079968.
A.H. Gulbenk, D.J. Horne and H. Johnson, Chem. Abstr., 77, 4850 (1972).
B.P. Fors, P. Krattiger, E. Strieter and S.L. Buchwald, Org. Lett., 10, 3505 (2008); doi:10.1021/ol801285g.