Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Interaction Between Amino Acid Derivatives of Aspirin and Human Serum Albumin
Corresponding Author(s) : H.H. Chang
Asian Journal of Chemistry,
Vol. 27 No. 12 (2015): Vol 27 Issue 12
Abstract
Aspirin, with simple structure and good effects, is one of the most popular antipyretic and anti-inflammatory drugs. Tested more than a century, aspirin was found enough to treat cancer and cardiovascular disease. However, the side effects of aspirin should not be ignored. In order to overcome these side effects, its mechanism of action and drug-modification were pushed to a hot spot. Three amino acid derivatives of aspirin were synthesised and the interaction with human serum albumin were studied via fluorescence spectroscopy. The main binding force between P1, P2 and human serum albumin was mainly van der Waals forces, the interaction of human serum albumin with P3 was mainly electrostatic attraction. Synchronous fluorescence spectroscopy indicated that aspirin and its derivatives have changed the chemical environment of the tryptophan residues, inducing polarity of hydrophobic cavity and stretch of the peptide chain, thus making the protein conformation changed. Amino acid derivatives of aspirin can decrease the fluorescence intensity of human serum albumin, which result from the changing of the chemical environment caused by aspirin and its derivatives.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.B. Meng, Z.Q. Teng, N.N. Zheng, W.W. Meng, R.J. Dai and Y.L. Deng, Iran. J. Pharm. Res., 12, 221 (2013).
- P.J. Wheatley, Chem. Eng. News, 43, 50 (1965).
- R.J. Shaw and L.C. Cantley, Science, 336, 813 (2012); doi:10.1126/science.1223140.
- F.V.N. Din, A. Valanciute, V.P. Houde, D. Zibrova, K.A. Green, K. Sakamoto, D.R. Alessi and M.G. Dunlop, Gastroenterology, 142, 1504 (2012); doi:10.1053/j.gastro.2012.02.050.
- R.B. Gaynor, M.-J. Yin and Y. Yamamoto, Nature, 396, 77 (1998); doi:10.1038/23948.
- N. Nath, G. Labaze, B. Rigas and K. Kashfi, Biochem. Biophys. Res. Commun., 326, 93 (2004); doi:10.1016/j.bbrc.2004.11.009.
- N. Ouyang, J.L. Williams and B. Rigas, Carcinogenesis, 29, 1794 (2008); doi:10.1093/carcin/bgn127.
- R. Kodela, M. Chattopadhyay and K. Kashfi, Med. Chem. Lett., 3, 257 (2012); doi:10.1021/ml300002m.
- A.O. Pedersen, K.-L.D. Mensberg and U. Kragh-Hansen, Eur. J. Biochem., 233, 395 (1995); doi:10.1111/j.1432-1033.1995.395_2.x.
- S. Rivera, J. Azcon-Bieto, F.J. Lopez-Soriano, M. Miralpeix and J.M. Argiles, Biochem. J., 249, 443 (1988); doi:10.1042/bj2490443.
- T.A. Mccoy, M. Maxwell and R.E. Neuman, Cancer Res., 16, 979 (1956).
References
L.B. Meng, Z.Q. Teng, N.N. Zheng, W.W. Meng, R.J. Dai and Y.L. Deng, Iran. J. Pharm. Res., 12, 221 (2013).
P.J. Wheatley, Chem. Eng. News, 43, 50 (1965).
R.J. Shaw and L.C. Cantley, Science, 336, 813 (2012); doi:10.1126/science.1223140.
F.V.N. Din, A. Valanciute, V.P. Houde, D. Zibrova, K.A. Green, K. Sakamoto, D.R. Alessi and M.G. Dunlop, Gastroenterology, 142, 1504 (2012); doi:10.1053/j.gastro.2012.02.050.
R.B. Gaynor, M.-J. Yin and Y. Yamamoto, Nature, 396, 77 (1998); doi:10.1038/23948.
N. Nath, G. Labaze, B. Rigas and K. Kashfi, Biochem. Biophys. Res. Commun., 326, 93 (2004); doi:10.1016/j.bbrc.2004.11.009.
N. Ouyang, J.L. Williams and B. Rigas, Carcinogenesis, 29, 1794 (2008); doi:10.1093/carcin/bgn127.
R. Kodela, M. Chattopadhyay and K. Kashfi, Med. Chem. Lett., 3, 257 (2012); doi:10.1021/ml300002m.
A.O. Pedersen, K.-L.D. Mensberg and U. Kragh-Hansen, Eur. J. Biochem., 233, 395 (1995); doi:10.1111/j.1432-1033.1995.395_2.x.
S. Rivera, J. Azcon-Bieto, F.J. Lopez-Soriano, M. Miralpeix and J.M. Argiles, Biochem. J., 249, 443 (1988); doi:10.1042/bj2490443.
T.A. Mccoy, M. Maxwell and R.E. Neuman, Cancer Res., 16, 979 (1956).