Copyright (c) 2023 Pragati Sharma, Pragya Sinha
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green One-Pot Pseudo-Four Component Synthesis of Substituted 5-Cyano-2-imino-4-aryl/ heteroaryl-6-(phenylthio)-2H-pyran-3-carboxylic Acid Catalyzed by Montmorillonite K-10 Clay
Corresponding Author(s) : P. Sinha
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
A synthetic method of substituted 5-cyano-2-imino-4-aryl/heteroaryl-6-(phenylthio)-2H-pyran-3-carboxylic acid (4a-d) using Montmorillonite K-10 clay as catalyst was developed via one-pot pseudo-four-component reaction. Various aldehydes and thiophenols exhibit swift reactivity with cyanoacetic acid, resulting in satisfactory to exceptional yields (ranging from 70% to 90%) within an exceptionally short reaction duration of 0.75 to 1.5 h. The structural characterization of the synthesized compounds was conducted through IR, 1H, 13C NMR and elemental analysis. Safer technique, simple work-up as well as reusability of the catalyst for two runs are the characteristic features of this method. This multicomponent one-pot reaction approach demonstrates a straightforward synthetic strategy for the formation of two novel C-C bonds, one C-S bond, one C-O bond, and the formation of a new ring structure. Additionally, this reaction exhibits high efficiency as all the reactants are completely utilized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.C. Erythropel, J.B. Zimmerman, T.M. De Winter, L. Petitjean, C.H. Lam, F. Melnikov, A.W. Lounsbury, K.E. Mellor, N.Z. Jankovic, Q. Tu, L.N. Pincus, M.M. Falinski, W. Shi, P. Coish, D.L. Plata and P.T. Anastas, Green Chem., 20, 1929 (2018); https://doi.org/10.1039/C8GC00482J
- P. Anastas and N. Eghbali, Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B
- S.E. John, S. Gulati and N. Shankaraiah, Org. Chem. Front., 8, 4237 (2021); https://doi.org/10.1039/D0QO01480J
- F. Sutanto, S. Shaabani, C.G. Neochoritis, T. Zarganes-Tzitzikas, P. Patil, E. Ghonchepour and A. Dömling, Sci. Adv., 7, eabd9307 (2021); https://doi.org/10.1126/sciadv.abd9307
- N. Kaur and D. Kishore, J. Chem. Pharm. Res., 4, 991 (2012).
- B.S. Kumar, A. Dhakshinamoorthy and K. Pitchumani, Catal. Sci. Technol., 4, 2378 (2014); https://doi.org/10.1039/C4CY00112E
- E. Kabir and M. Uzzaman, Results Chem., 4, 100606 (2022); https://doi.org/10.1016/j.rechem.2022.100606
- A. Chaurasiya, C. Sahu, S.K. Wahan and P.A. Chawla, J. Mol. Struct., 1280, 134967 (2023); https://doi.org/10.1016/j.molstruc.2023.134967
- S. Puri, S. Sawant and K. Juvale, J. Mol. Struct., 1284, 135327 (2023); https://doi.org/10.1016/j.molstruc.2023.135327
- C. Sahu, A. Chaurasiya and P.A. Chawla, J. Heterocycl. Chem., 60, 899 (2023); https://doi.org/10.1002/jhet.4588
- J. Singh, V. Kumar, P. Silakari and S. Kumar, J. Heterocycl. Chem., 60, 929 (2023); https://doi.org/10.1002/jhet.4589
- K. Taruneshwar Jha, A. Shome, Chahat and P.A. Chawla, Bioorg. Chem., 138, 106680 (2023); https://doi.org/10.1016/j.bioorg.2023.106680
- J. Uppal, P.A. Mir, A. Chawla, N. Kumar, G. Kaur, P.M.S. Bedi and D.D. Bhandari, J. Heterocycl. Chem., 60, 369 (2023); https://doi.org/10.1002/jhet.4581
- S. Pathania, R.K. Narang and R.K. Rawal, Eur. J. Med. Chem., 180, 486 (2019); https://doi.org/10.1016/j.ejmech.2019.07.043
- N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
- H. Zhu, V. Dronamraju, W. Xie and S.S. More, Med. Chem. Res., 30, 305 (2021); https://doi.org/10.1007/s00044-020-02687-1
- S.N. Maddila, S. Maddila, S.V.H.S. Bhaskaruni, N. Kerru and S.B. Jonnalagadda, Inorg. Chem. Commun., 112, 107706 (2020); https://doi.org/10.1016/j.inoche.2019.107706
- S.A. Khalid and P.G. Waterman, Phytochemistry, 20, 2761 (1981); https://doi.org/10.1016/0031-9422(81)85282-X
- B. Yu, E. Zhang, X.N. Sun, J.L. Ren, Y. Fang, B.L. Zhang, D.Q. Yu and H.M. Liu, Steroids, 78, 494 (2013); https://doi.org/10.1016/j.steroids.2013.02.004
- F. Safari, H. Hosseini, M. Bayat and A. Ranjbar, RSC Adv., 9, 24843 (2019); https://doi.org/10.1039/C9RA03196K
- D. Kumar, P. Sharma, H. Singh, K. Nepali, G.K. Gupta, S.K. Jain and F. Ntie-Kang, RSC Adv., 7, 36977 (2017); https://doi.org/10.1039/C7RA05441F
- M. Debbabi, V.D. Nimbarte, S. Chekir, S. Chortani, A. Romdhane and H. Ben jannet, Bioorg. Chem., 82, 129 (2019); https://doi.org/10.1016/j.bioorg.2018.10.004
- L. Wei, G.G. He, L. Liu, M. Tang, T. Zhang, H. Bai and Z.T. Du, Russ. J. Org. Chem., 56, 1089 (2020); https://doi.org/10.1134/S1070428020060196
- R.M. Mohareb, B.A. Ibrahim and O.F. Al Farouk, Bull. Chem. Soc. Ethiop., 37, 405 (2023); https://doi.org/10.4314/bcse.v37i2.12
- M. Ayaz, A. Sadiq, M. Junaid, F. Ullah, M. Ovais, I. Ullah, J. Ahmed and M. Shahid, Front. Aging Neurosci., 11, 155 (2019); https://doi.org/10.3389/fnagi.2019.00155
- P. Sharma, P. Sinha and R.K. Bansal, Beilstein Arch., 2022, 73 (2022); https://doi.org/10.3762/bxiv.2022.73.v1
- P. Sharma, S. Sharma and P. Sinha, IISUniv. J. Sci. Technol., 10, 1 (2021).
- P.E. Hansen, M. Vakili, F.S. Kamounah and J. Spanget-Larsen, Molecules, 26, 7651 (2021); https://doi.org/10.3390/molecules26247651
- A. Foris and N.H. On, NMR Chemical Shifts, Part I (2016); https://doi.org/10.13140/RG.2.1.5188.1365
- A. Foris, On Hydrogen Bonding and OH Chemical Shifts (2015); https://doi.org/10.13140/RG.2.1.3978.1207
References
H.C. Erythropel, J.B. Zimmerman, T.M. De Winter, L. Petitjean, C.H. Lam, F. Melnikov, A.W. Lounsbury, K.E. Mellor, N.Z. Jankovic, Q. Tu, L.N. Pincus, M.M. Falinski, W. Shi, P. Coish, D.L. Plata and P.T. Anastas, Green Chem., 20, 1929 (2018); https://doi.org/10.1039/C8GC00482J
P. Anastas and N. Eghbali, Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B
S.E. John, S. Gulati and N. Shankaraiah, Org. Chem. Front., 8, 4237 (2021); https://doi.org/10.1039/D0QO01480J
F. Sutanto, S. Shaabani, C.G. Neochoritis, T. Zarganes-Tzitzikas, P. Patil, E. Ghonchepour and A. Dömling, Sci. Adv., 7, eabd9307 (2021); https://doi.org/10.1126/sciadv.abd9307
N. Kaur and D. Kishore, J. Chem. Pharm. Res., 4, 991 (2012).
B.S. Kumar, A. Dhakshinamoorthy and K. Pitchumani, Catal. Sci. Technol., 4, 2378 (2014); https://doi.org/10.1039/C4CY00112E
E. Kabir and M. Uzzaman, Results Chem., 4, 100606 (2022); https://doi.org/10.1016/j.rechem.2022.100606
A. Chaurasiya, C. Sahu, S.K. Wahan and P.A. Chawla, J. Mol. Struct., 1280, 134967 (2023); https://doi.org/10.1016/j.molstruc.2023.134967
S. Puri, S. Sawant and K. Juvale, J. Mol. Struct., 1284, 135327 (2023); https://doi.org/10.1016/j.molstruc.2023.135327
C. Sahu, A. Chaurasiya and P.A. Chawla, J. Heterocycl. Chem., 60, 899 (2023); https://doi.org/10.1002/jhet.4588
J. Singh, V. Kumar, P. Silakari and S. Kumar, J. Heterocycl. Chem., 60, 929 (2023); https://doi.org/10.1002/jhet.4589
K. Taruneshwar Jha, A. Shome, Chahat and P.A. Chawla, Bioorg. Chem., 138, 106680 (2023); https://doi.org/10.1016/j.bioorg.2023.106680
J. Uppal, P.A. Mir, A. Chawla, N. Kumar, G. Kaur, P.M.S. Bedi and D.D. Bhandari, J. Heterocycl. Chem., 60, 369 (2023); https://doi.org/10.1002/jhet.4581
S. Pathania, R.K. Narang and R.K. Rawal, Eur. J. Med. Chem., 180, 486 (2019); https://doi.org/10.1016/j.ejmech.2019.07.043
N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
H. Zhu, V. Dronamraju, W. Xie and S.S. More, Med. Chem. Res., 30, 305 (2021); https://doi.org/10.1007/s00044-020-02687-1
S.N. Maddila, S. Maddila, S.V.H.S. Bhaskaruni, N. Kerru and S.B. Jonnalagadda, Inorg. Chem. Commun., 112, 107706 (2020); https://doi.org/10.1016/j.inoche.2019.107706
S.A. Khalid and P.G. Waterman, Phytochemistry, 20, 2761 (1981); https://doi.org/10.1016/0031-9422(81)85282-X
B. Yu, E. Zhang, X.N. Sun, J.L. Ren, Y. Fang, B.L. Zhang, D.Q. Yu and H.M. Liu, Steroids, 78, 494 (2013); https://doi.org/10.1016/j.steroids.2013.02.004
F. Safari, H. Hosseini, M. Bayat and A. Ranjbar, RSC Adv., 9, 24843 (2019); https://doi.org/10.1039/C9RA03196K
D. Kumar, P. Sharma, H. Singh, K. Nepali, G.K. Gupta, S.K. Jain and F. Ntie-Kang, RSC Adv., 7, 36977 (2017); https://doi.org/10.1039/C7RA05441F
M. Debbabi, V.D. Nimbarte, S. Chekir, S. Chortani, A. Romdhane and H. Ben jannet, Bioorg. Chem., 82, 129 (2019); https://doi.org/10.1016/j.bioorg.2018.10.004
L. Wei, G.G. He, L. Liu, M. Tang, T. Zhang, H. Bai and Z.T. Du, Russ. J. Org. Chem., 56, 1089 (2020); https://doi.org/10.1134/S1070428020060196
R.M. Mohareb, B.A. Ibrahim and O.F. Al Farouk, Bull. Chem. Soc. Ethiop., 37, 405 (2023); https://doi.org/10.4314/bcse.v37i2.12
M. Ayaz, A. Sadiq, M. Junaid, F. Ullah, M. Ovais, I. Ullah, J. Ahmed and M. Shahid, Front. Aging Neurosci., 11, 155 (2019); https://doi.org/10.3389/fnagi.2019.00155
P. Sharma, P. Sinha and R.K. Bansal, Beilstein Arch., 2022, 73 (2022); https://doi.org/10.3762/bxiv.2022.73.v1
P. Sharma, S. Sharma and P. Sinha, IISUniv. J. Sci. Technol., 10, 1 (2021).
P.E. Hansen, M. Vakili, F.S. Kamounah and J. Spanget-Larsen, Molecules, 26, 7651 (2021); https://doi.org/10.3390/molecules26247651
A. Foris and N.H. On, NMR Chemical Shifts, Part I (2016); https://doi.org/10.13140/RG.2.1.5188.1365
A. Foris, On Hydrogen Bonding and OH Chemical Shifts (2015); https://doi.org/10.13140/RG.2.1.3978.1207