Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Concentration of Glycine Surfactant on Photocatalytic Properties of Zinc Oxide Nanoparticles for Photocatalytic Degradation of Methylene Blue
Corresponding Author(s) : Reda M. Mohamed
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
Hydrothermal method in presence of different concentration of glycine as surfactant was used to prepare zinc oxide nanoparticles. Different techniques were used to describe the prepared nanocomposites. This reveals that the concentration of glycine acting significant role in zinc oxide band gap. The zinc oxide nanoparticles photocatalytic performances were studied by measuring degradation of methylene blue under UV light. Photocatalytic parameters such as the concentration of glycine, photocatalyst dose of zinc oxide which prepared by 6 mmol of glycine (ZnO-6G) were studied.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
- A.O. Ibhadon and P. Fitzpatrick, Catalysts, 3, 189 (2013); https://doi.org/10.3390/catal3010189.
- M.M. Mahlambi, C.J. Ngila and B.B. Mamba, J. Nanomater., 2015, 5 (2015); https://doi.org/10.1155/2015/790173.
- K. Mondal and A. Sharma, RSC Adv., 6, 83589 (2016); https://doi.org/10.1039/C6RA18102C.
- R. Ahmad, Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam and J. Kim, J. Environ. Chem. Eng., 4, 4143 (2016); https://doi.org/10.1016/j.jece.2016.09.009.
- M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); https://doi.org/10.1021/cr00033a004.
- K. Nakata and A. Fujishima, J. Photochem. Photobiol. Photochem. Rev., 13, 169 (2012); https://doi.org/10.1016/j.jphotochemrev.2012.06.001.
- L.K. Pan, X.J. Liu, Z. Sun and C.Q. Sun, J. Mater. Chem. A Mater. Energy Sustain., 1, 8299 (2013); https://doi.org/10.1039/c3ta10981j.
- X. Xu, C. Randorn, P. Efstathiou and J.T. Irvine, Nat. Mater., 11, 595 (2012); https://doi.org/10.1038/nmat3312.
- D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, Chem. Soc. Rev., 38, 1999 (2009); https://doi.org/10.1039/b714786b.
- T.P. Chou, Q.F. Zhang, G.E. Fryxell and G.Z. Cao, Adv. Mater., 19, 2588 (2007); https://doi.org/10.1002/adma.200602927.
- K. Park, Q. Zhang, B.B. Garcia, X. Zhou, Y.-H. Jeong and G. Cao, Adv. Mater., 22, 2329 (2010); https://doi.org/10.1002/adma.200903219.
- S.B. Park and Y.C. Kang, J. Aerosol Sci., 28, 473 (1997); https://doi.org/10.1016/S0021-8502(97)85236-6.
- S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan and K. Ariga, Catal. Commun., 8, 1377 (2007); https://doi.org/10.1016/j.catcom.2006.12.001.
- J.J. Wu and C.H. Tseng, Appl. Catal. B, 66, 51 (2006); https://doi.org/10.1016/j.apcatb.2006.02.013.
- Z.Q. Xu, H. Deng, J. Xie, Y. Li and X.T. Zu, Appl. Surf. Sci., 253, 476 (2007); https://doi.org/10.1016/j.apsusc.2005.12.113.
- M. Yu, H. Qiu, X. Chen, H. Li and W. Gong, Mater. Chem. Phys., 126, 797 (2011); https://doi.org/10.1016/j.matchemphys.2010.12.041.
- Y. Yang, Y. Li, L. Zhu, H. He, L. Hu, J. Huang, F. Hu, B. He and Z. Ye, Nanoscale, 5, 10461 (2013); https://doi.org/10.1039/c3nr03160h.
- Y.-H. Lu, W.-H. Lin, C.-Y. Yang, Y.-H. Chiu, Y.-C. Pu, M.-H. Lee, Y.-C. Tseng and Y.-J.Hsu, Nanoscale, 6, 8796 (2014); https://doi.org/10.1039/C4NR01607F.
- R. Saleh and N.F. Djaja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 581 (2014); https://doi.org/10.1016/j.saa.2014.03.089.
- J. Kaur and S. Singhal, Ceram. Int., 40, 7417 (2014); https://doi.org/10.1016/j.ceramint.2013.12.088.
- S. Kuriakose, B. Satpati and S. Mohapatra, Phys. Chem. Chem. Phys., 17, 25172 (2015); https://doi.org/10.1039/C5CP01681A.
- S.G. Kumar and K.S.R.K. Rao, RSC Adv., 5, 3306 (2015); https://doi.org/10.1039/C4RA13299H.
- L.P. Zhu, W.Y. Huang, L.L. Ma, S.Y. Fu, Y. Yu and Z.J. Jia, Acta Physico- Chim. Sinica, 22, 1175 (2006).
- S. Iijima, Nature, 354, 56 (1991); https://doi.org/10.1038/354056a0.
- T.A. Saleh, M.A. Gondal, Q.A. Drmosh, Z.H. Yamani and A. Al-Yamani, Chem. Eng. J., 166, 407 (2011); https://doi.org/10.1016/j.cej.2010.10.070.
- X.J. Wang, S.W. Yao and X. Li, Chin. J. Chem., 27, 1317 (2009); https://doi.org/10.1002/cjoc.200990220.
- L.P. Zhu, G.H. Liao, W.Y. Huang, L.L. Ma, Y. Yang, Y. Yu and S.Y. Fu, Mater. Sci. Eng. B, 163, 194 (2009); https://doi.org/10.1016/j.mseb.2009.05.021.
- R.M. Mohamed and M.A. Salam, Mater. Res. Bull., 50, 85 (2014); https://doi.org/10.1016/j.materresbull.2013.10.031.
- K. Dai, G. Dawson, S. Yang, Z. Chen and L. Lu, Chem. Eng. J., 191, 571 (2012); https://doi.org/10.1016/j.cej.2012.03.008.
- H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka and Y. Achiba, Synth. Met., 103, 2555 (1999); https://doi.org/10.1016/S0379-6779(98)00278-1.
- M.S. Dresselhaus, G. Dresselhaus and R. Saito, Carbon, 33, 883 (1995); https://doi.org/10.1016/0008-6223(95)00017-8.
- P.C. Eklund, J.M. Holden and R.A. Jishi, Carbon, 33, 959 (1995); https://doi.org/10.1016/0008-6223(95)00035-C.
- C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus and M.A. Pimenta, Phys. Rev. Lett., 93, 147406 (2004); https://doi.org/10.1103/PhysRevLett.93.147406.
- S.J. Tans, M.H. Devore, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs and C. Dekker, Nature, 386, 474 (1997); https://doi.org/10.1038/386474a0.
- M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess and R.E. Smalley, Science, 275, 1922 (1997); https://doi.org/10.1126/science.275.5308.1922.
- Y. Cong, X. Li, Y. Qin, Z. Dong, G. Yuan, Z. Cui and X. Lai, Appl. Catal. B, 107, 128 (2011); https://doi.org/10.1016/j.apcatb.2011.07.005.
- K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009); https://doi.org/10.1002/adma.200802738.
- W. Chen, X. Pan, M.G. Willinger, D.S. Su and X. Bao, J. Am. Chem. Soc., 128, 3136 (2006); https://doi.org/10.1021/ja056721l.
References
A. Fujishima and K. Honda, Nature, 238, 37 (1972); https://doi.org/10.1038/238037a0.
A.O. Ibhadon and P. Fitzpatrick, Catalysts, 3, 189 (2013); https://doi.org/10.3390/catal3010189.
M.M. Mahlambi, C.J. Ngila and B.B. Mamba, J. Nanomater., 2015, 5 (2015); https://doi.org/10.1155/2015/790173.
K. Mondal and A. Sharma, RSC Adv., 6, 83589 (2016); https://doi.org/10.1039/C6RA18102C.
R. Ahmad, Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam and J. Kim, J. Environ. Chem. Eng., 4, 4143 (2016); https://doi.org/10.1016/j.jece.2016.09.009.
M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); https://doi.org/10.1021/cr00033a004.
K. Nakata and A. Fujishima, J. Photochem. Photobiol. Photochem. Rev., 13, 169 (2012); https://doi.org/10.1016/j.jphotochemrev.2012.06.001.
L.K. Pan, X.J. Liu, Z. Sun and C.Q. Sun, J. Mater. Chem. A Mater. Energy Sustain., 1, 8299 (2013); https://doi.org/10.1039/c3ta10981j.
X. Xu, C. Randorn, P. Efstathiou and J.T. Irvine, Nat. Mater., 11, 595 (2012); https://doi.org/10.1038/nmat3312.
D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, Chem. Soc. Rev., 38, 1999 (2009); https://doi.org/10.1039/b714786b.
T.P. Chou, Q.F. Zhang, G.E. Fryxell and G.Z. Cao, Adv. Mater., 19, 2588 (2007); https://doi.org/10.1002/adma.200602927.
K. Park, Q. Zhang, B.B. Garcia, X. Zhou, Y.-H. Jeong and G. Cao, Adv. Mater., 22, 2329 (2010); https://doi.org/10.1002/adma.200903219.
S.B. Park and Y.C. Kang, J. Aerosol Sci., 28, 473 (1997); https://doi.org/10.1016/S0021-8502(97)85236-6.
S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan and K. Ariga, Catal. Commun., 8, 1377 (2007); https://doi.org/10.1016/j.catcom.2006.12.001.
J.J. Wu and C.H. Tseng, Appl. Catal. B, 66, 51 (2006); https://doi.org/10.1016/j.apcatb.2006.02.013.
Z.Q. Xu, H. Deng, J. Xie, Y. Li and X.T. Zu, Appl. Surf. Sci., 253, 476 (2007); https://doi.org/10.1016/j.apsusc.2005.12.113.
M. Yu, H. Qiu, X. Chen, H. Li and W. Gong, Mater. Chem. Phys., 126, 797 (2011); https://doi.org/10.1016/j.matchemphys.2010.12.041.
Y. Yang, Y. Li, L. Zhu, H. He, L. Hu, J. Huang, F. Hu, B. He and Z. Ye, Nanoscale, 5, 10461 (2013); https://doi.org/10.1039/c3nr03160h.
Y.-H. Lu, W.-H. Lin, C.-Y. Yang, Y.-H. Chiu, Y.-C. Pu, M.-H. Lee, Y.-C. Tseng and Y.-J.Hsu, Nanoscale, 6, 8796 (2014); https://doi.org/10.1039/C4NR01607F.
R. Saleh and N.F. Djaja, Spectrochim. Acta A Mol. Biomol. Spectrosc., 130, 581 (2014); https://doi.org/10.1016/j.saa.2014.03.089.
J. Kaur and S. Singhal, Ceram. Int., 40, 7417 (2014); https://doi.org/10.1016/j.ceramint.2013.12.088.
S. Kuriakose, B. Satpati and S. Mohapatra, Phys. Chem. Chem. Phys., 17, 25172 (2015); https://doi.org/10.1039/C5CP01681A.
S.G. Kumar and K.S.R.K. Rao, RSC Adv., 5, 3306 (2015); https://doi.org/10.1039/C4RA13299H.
L.P. Zhu, W.Y. Huang, L.L. Ma, S.Y. Fu, Y. Yu and Z.J. Jia, Acta Physico- Chim. Sinica, 22, 1175 (2006).
S. Iijima, Nature, 354, 56 (1991); https://doi.org/10.1038/354056a0.
T.A. Saleh, M.A. Gondal, Q.A. Drmosh, Z.H. Yamani and A. Al-Yamani, Chem. Eng. J., 166, 407 (2011); https://doi.org/10.1016/j.cej.2010.10.070.
X.J. Wang, S.W. Yao and X. Li, Chin. J. Chem., 27, 1317 (2009); https://doi.org/10.1002/cjoc.200990220.
L.P. Zhu, G.H. Liao, W.Y. Huang, L.L. Ma, Y. Yang, Y. Yu and S.Y. Fu, Mater. Sci. Eng. B, 163, 194 (2009); https://doi.org/10.1016/j.mseb.2009.05.021.
R.M. Mohamed and M.A. Salam, Mater. Res. Bull., 50, 85 (2014); https://doi.org/10.1016/j.materresbull.2013.10.031.
K. Dai, G. Dawson, S. Yang, Z. Chen and L. Lu, Chem. Eng. J., 191, 571 (2012); https://doi.org/10.1016/j.cej.2012.03.008.
H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka and Y. Achiba, Synth. Met., 103, 2555 (1999); https://doi.org/10.1016/S0379-6779(98)00278-1.
M.S. Dresselhaus, G. Dresselhaus and R. Saito, Carbon, 33, 883 (1995); https://doi.org/10.1016/0008-6223(95)00017-8.
P.C. Eklund, J.M. Holden and R.A. Jishi, Carbon, 33, 959 (1995); https://doi.org/10.1016/0008-6223(95)00035-C.
C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus and M.A. Pimenta, Phys. Rev. Lett., 93, 147406 (2004); https://doi.org/10.1103/PhysRevLett.93.147406.
S.J. Tans, M.H. Devore, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs and C. Dekker, Nature, 386, 474 (1997); https://doi.org/10.1038/386474a0.
M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess and R.E. Smalley, Science, 275, 1922 (1997); https://doi.org/10.1126/science.275.5308.1922.
Y. Cong, X. Li, Y. Qin, Z. Dong, G. Yuan, Z. Cui and X. Lai, Appl. Catal. B, 107, 128 (2011); https://doi.org/10.1016/j.apcatb.2011.07.005.
K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009); https://doi.org/10.1002/adma.200802738.
W. Chen, X. Pan, M.G. Willinger, D.S. Su and X. Bao, J. Am. Chem. Soc., 128, 3136 (2006); https://doi.org/10.1021/ja056721l.