Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Activation Energy Parameters for Hydrodynamic Permeability of Binary Aqueous Solutions of Divalent Transition Metal Sulphates and Magnesium Sulphate Through an Inorganic Membrane of Aluminium Oxide
Corresponding Author(s) : R.C. Thakur
Asian Journal of Chemistry,
Vol. 29 No. 9 (2017): Vol 29 Issue 9
Abstract
In the present study, inorganic membranes of aluminium oxide has been used for the determination of hydrodynamic permeabilities of some divalent transition metal sulphates namely; manganese sulphate, cobalt sulphate, nickel sulphate, copper sulphate, zinc sulphate and magnesium sulphate (reference electrolyte) in water. Filtration coefficient (Lp) as a function of hydrodynamic pressure and the concentration of the solute, rejection or coupling coefficient (s) as a function of solute concentration and activation parameters in order to know the mechanism of flow across an inorganic membrane of aluminum oxide are also determined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Quinke, Pogg. Ann., 107, 1 (1859).
- H.R. Kruyt, Kolloid Z., 22, 81 (1918); https://doi.org/10.1007/BF01459626.
- H. Freundlich and E. Rona, Sitzber. Preuss. Akad. Wiss. Physik. Math. Kl., 20, 397 (1920).
- H.R. Kruyt and P.C. Willigen, Kolloid Z., 45, 307 (1928); https://doi.org/10.1007/BF01423428.
- E.F. Burton, Phil. Mag., 11, 425 (1906);
- A. Tiselius, Kolloid Z., 85, 129 (1938); https://doi.org/10.1007/BF01519260.
- M.V. Smoluchowaski, in Graetz, Hand buck der Elebtriztat abd des Magbetisus II, Liepzig, p. 336 (1921).
- P.J.W. Debye and E.A.A. Huckel, J. Phys., 24, 135 (1933).
- R. Dom, W. Ann, 10, 46 (1980).
- B. Salopek, D. Krasi and S. Filipovi, Rudarsko-geoloiko-naftni zbornik, 4, 147(1992).
- J.D. Quist and E.R. Washburn, J. Am. Chem. Soc., 62, 3169 (1940); https://doi.org/10.1021/ja01868a076.
- J. Reuss, Mem. Soc. Imp. Naturalists Moscow, 2, 327 (1809).
- G. Wiedemann, Pogg. Ann, 99, 177 (1857).
- H.C. Hepburn, Proc. Phys. Soc. Lond., 39, 99 (1927).
- H.V. Helmholtz, W. Ann, 243, 337 (1879); https://doi.org/10.1002/andp.18792430702.
- H. Lamb, Philos. Mag., 25, 52 (1888); https://doi.org/10.1080/14786448808628148.
- R.P. Rastogi, Introduction to Non-Equilibrium Physical Chemistry, Elsevier, edn 1 (2008).
- N. Lakshminarayanaiah, Chem. Rev., 65, 493 (1965); https://doi.org/10.1021/cr60237a001.
- N. Lakshminarayaniah, Transport Phenomena in Membranes, Academic Press Inc., New York, p. 6 (1969).
- K.S. Spiegler, Farady Soc., 54, 1408 (1958); https://doi.org/10.1039/tf9585401408.
- R.L. Blokhra, S.K. Agarwal and N. Arora, J. Colloid Int. Sci., 73, 88 (1980); https://doi.org/10.1016/0021-9797(80)90125-3.
- R.L. Blokhra and S. Kohli, J. Non-Equilib. Thermodyn., 5, 205 (1980); https://doi.org/10.1515/jnet.1980.5.4.205.
- R.L. Blokhra, M.L. Parmar and R. Sidhu, J. Non-Equilib. Thermodyn., 8, 183 (1983); https://doi.org/10.1515/jnet.1983.8.3.183.
- R.L. Blokhra and S. Kohli, J. Electroanal. Chem. Interfacial Electrochem., 124, 285 (1981); https://doi.org/10.1016/S0022-0728(81)80305-1.
- R.L. Blokhra, S.C. Chauhan and R. Sidhu, J. Indian Chem. Soc., 59, 63 (1982).
- R.L. Blokhra, M.L. Parmar and S.C. Chauhan, J. Membr. Sci., 14, 67 (1983); https://doi.org/10.1016/S0376-7388(00)81374-5.
- R. Thakur, R. Sharma and B. Saini, Asian J. Chem., 28, 2043 (2016); https://doi.org/10.14233/ajchem.2016.19889.
- K. Singh, R. Kumar and V.N. Srivastava, J. Indian Chem. Soc., 57, 203 (1980).
- R.P. Rastogi, K. Singh and M.L. Srivastava, J. Phys. Chem., 73, 46 (1969); https://doi.org/10.1021/j100721a008.
- B.Z. Ginzburg and A. Katachalsky, J. Gen. Physiol., 47, 403 (1963); https://doi.org/10.1085/jgp.47.2.403.
- A.J. Staverman, Roc. Trav. Chim, 70, 344 (1951); https://doi.org/10.1002/recl.19510700409.
- S. Hwang and K. Kemmermeyer, Techniques of Chemistry, Membranes in Separations, John Wiley, New York, vol. 8, p. 133 (1975).
- S. Glastone, K.J. Laidler and H. Eyring, Theory of Rate Processes, McGraw Hill, New York (1941).
References
G. Quinke, Pogg. Ann., 107, 1 (1859).
H.R. Kruyt, Kolloid Z., 22, 81 (1918); https://doi.org/10.1007/BF01459626.
H. Freundlich and E. Rona, Sitzber. Preuss. Akad. Wiss. Physik. Math. Kl., 20, 397 (1920).
H.R. Kruyt and P.C. Willigen, Kolloid Z., 45, 307 (1928); https://doi.org/10.1007/BF01423428.
E.F. Burton, Phil. Mag., 11, 425 (1906);
A. Tiselius, Kolloid Z., 85, 129 (1938); https://doi.org/10.1007/BF01519260.
M.V. Smoluchowaski, in Graetz, Hand buck der Elebtriztat abd des Magbetisus II, Liepzig, p. 336 (1921).
P.J.W. Debye and E.A.A. Huckel, J. Phys., 24, 135 (1933).
R. Dom, W. Ann, 10, 46 (1980).
B. Salopek, D. Krasi and S. Filipovi, Rudarsko-geoloiko-naftni zbornik, 4, 147(1992).
J.D. Quist and E.R. Washburn, J. Am. Chem. Soc., 62, 3169 (1940); https://doi.org/10.1021/ja01868a076.
J. Reuss, Mem. Soc. Imp. Naturalists Moscow, 2, 327 (1809).
G. Wiedemann, Pogg. Ann, 99, 177 (1857).
H.C. Hepburn, Proc. Phys. Soc. Lond., 39, 99 (1927).
H.V. Helmholtz, W. Ann, 243, 337 (1879); https://doi.org/10.1002/andp.18792430702.
H. Lamb, Philos. Mag., 25, 52 (1888); https://doi.org/10.1080/14786448808628148.
R.P. Rastogi, Introduction to Non-Equilibrium Physical Chemistry, Elsevier, edn 1 (2008).
N. Lakshminarayanaiah, Chem. Rev., 65, 493 (1965); https://doi.org/10.1021/cr60237a001.
N. Lakshminarayaniah, Transport Phenomena in Membranes, Academic Press Inc., New York, p. 6 (1969).
K.S. Spiegler, Farady Soc., 54, 1408 (1958); https://doi.org/10.1039/tf9585401408.
R.L. Blokhra, S.K. Agarwal and N. Arora, J. Colloid Int. Sci., 73, 88 (1980); https://doi.org/10.1016/0021-9797(80)90125-3.
R.L. Blokhra and S. Kohli, J. Non-Equilib. Thermodyn., 5, 205 (1980); https://doi.org/10.1515/jnet.1980.5.4.205.
R.L. Blokhra, M.L. Parmar and R. Sidhu, J. Non-Equilib. Thermodyn., 8, 183 (1983); https://doi.org/10.1515/jnet.1983.8.3.183.
R.L. Blokhra and S. Kohli, J. Electroanal. Chem. Interfacial Electrochem., 124, 285 (1981); https://doi.org/10.1016/S0022-0728(81)80305-1.
R.L. Blokhra, S.C. Chauhan and R. Sidhu, J. Indian Chem. Soc., 59, 63 (1982).
R.L. Blokhra, M.L. Parmar and S.C. Chauhan, J. Membr. Sci., 14, 67 (1983); https://doi.org/10.1016/S0376-7388(00)81374-5.
R. Thakur, R. Sharma and B. Saini, Asian J. Chem., 28, 2043 (2016); https://doi.org/10.14233/ajchem.2016.19889.
K. Singh, R. Kumar and V.N. Srivastava, J. Indian Chem. Soc., 57, 203 (1980).
R.P. Rastogi, K. Singh and M.L. Srivastava, J. Phys. Chem., 73, 46 (1969); https://doi.org/10.1021/j100721a008.
B.Z. Ginzburg and A. Katachalsky, J. Gen. Physiol., 47, 403 (1963); https://doi.org/10.1085/jgp.47.2.403.
A.J. Staverman, Roc. Trav. Chim, 70, 344 (1951); https://doi.org/10.1002/recl.19510700409.
S. Hwang and K. Kemmermeyer, Techniques of Chemistry, Membranes in Separations, John Wiley, New York, vol. 8, p. 133 (1975).
S. Glastone, K.J. Laidler and H. Eyring, Theory of Rate Processes, McGraw Hill, New York (1941).